
\ \ -  
I .  

'THE USE OF RESONANT ,SATELLITE ORBITS ' 
2 , -  r Y  

TO DETERMINE LONGITUDE VARIATIONS ~ 

\ IN THE EARTH'S GRAVCTY FIELD. 

BY '\ 

C. A. WAGNER 

I 

I 



. 

THE USE OF RESONANT SATELLITE ORBITS TO DETERMINE 
LONGITUDE VARIATIONS I N  THE EARTH'S GRAVITY FLED 

C .  A. Wagner 
Spec ia l  Pro jec ts  Branch 

Goddard Space F l i g h t  Center 
Greenbelt, Maryland 

ABSTRACT 

A s a t e l l i t e  whose o r b i t a l  r a t e  i s  commensurate ( o r  r a t i o n a l )  with the  

e a r t h ' s  r o t a t i o n  rate w i l l  descr ibe  a constant  ground t r a c k  over a whole 

number of sidereal days. On such a s a t e l l i t e ,  the  s m a l l  o r b i t  averaged 

along t r a c k  fo rce  from c e r t a i n  longitude harmonics of g r a v i t y  can bu i ld  up 

over many commensurate synodic) periods t o  produce appreciable  changes i n  

the semimajor axis of the o r b i t  and longitude placement of the ground t r ack .  

The l i b r a t o r y  na ture  of these changes and the s p e c i f i c  hamoa ics  which can 

cause them f o r  any resonance case are  discussed with re ference  t o  a c i rcu-  

l a r  o r b i t .  General formulas a r e  presented f o r  t hese  l i b r a t i o n s ,  w i t h  t yp i -  

c a l  e r r o r s  determined by numerical i n t eg ra t ion .  The s p e c i f i c  theory  of the 

24 hour, nea r ly  c i r c u l a r  o r b i t ,  s a t e l l i t e  i s  presented  i n  d e t a i l  w i t h  a c t u a l  

o r b i t  data from t h r e e  such s a t e l l i t e s  used t o  determine the  resonaat  e a r t h  

It i s  shown t h a t  a number of subsynchronous c i r c u l a r  resonant o r b i t s  

o f f e r  similar promise i n  discr iminat ing e a s i l y  and uniqueiy o the r  low and 

high order  longi tude harmonics; among them H s ,  H43, H 5 4 ,  H5s,  H,, and H ~ B .  
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INTRODUCTION 

It has been known f o r  Some t i m e  t h a t  s a t e l l i t e s  whose per iods are 

commensurate wi th  t h e  e a r t h ' s  r o t a t i o n  per iod  can s u f f e r  long term per-  

t u r b a t i o n s  i n  t h e i r  elements due t o  longi tude v a r i a t i o n s  i n  t h e  e a r t h ' s  

g r a v i t y  f i e l d  [l]. The reason t h i s  i s  so i s  t h a t  viewed i n  a system of 

coord ina tes  r o t a t i n g  with the  earth, t h e  s a t e l l i t e  wi th  commensurate 

pe r iod  maintains  a f i x e d  r e l a t i o n s h i p  t o  t h e  m d e r l y i n g  longi tude g r a v i t y  

f i e l d  (Figure 1). 

per iod  of commensurability, due t o  a g r a v i t y  per turbat ion.  Then, no 

matter how small the  per iodic  per turba t ion  is ,  over many commensurate or 

synodic per iods a l a r g e  change i n  t h a t  element can occur as long as the  

geographic conf igura t ion  of the  o r b i t  i s  r e l a t i v e l y  unchanged. The 

Assume t h e r e  i s  net  change i n  an element over t h e  

. 

l a rge ,  o r  secular ,  change i s  merely the sum of t h e  many s m a l l  ne t  

pe r iod ic  changes. I n  t h i s  paper I w i l l  be concerned only with developing 

t h e  s e c u l a r  e f f e c t s  of longitude g rav i ty  narmonics on the  semimajor a x i s  

of c i r c u l a r  o r b i t s  with constant  or near ly  constant  ground t r ack .  The 

o r b i t  per iod  of such a s a t e l l i t e  i s  s a i d  t o  be commensurate or resonant 

with t h e  e a r t h ' s  r o t a t i o n  period. In  t h e  c i r c u l a r  o r b i t  case,  without 

i n c l i n a t i o n  r e s t r i c t i o n ,  it i s  possible  t o  der ive  the  secu la r  change of 

t h e  semimajor a x i s  from a very pr imit ive viewpoint by a s t ra ight forward  

o r b i t  averaging of t h e  per turba t ion  forces .  A simple inves t iga t ion  of the 

symmetries of t he  harmonics with respect  t o  the  constant  ground t r a c k  w i l l  

be shown t o  be almost s u f f i c i e n t  t o  d iscr imina te  those eayth per turbat ions which 

can cause secu la r  changes of the  semimajor a x i s  and those which cannot as 

long as t h e  o r b i t  remains c i r c u l a r .  

o f  t h e  semimajor  axis with respec t  t o  t h e  longi tude hamonics  of g r a v i t y  

AS might be inferred, the long term change 
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is s t rongly  dependent on t h e  longi tude o r i en ta t ion  of  t h e  ground t r ack .  

This may be specif ied,  f o r  example, by one of the equator  crossings of the  

s a t e l l i t e .  Since a change i n  semi-major axis i s  accompanied by a change 

i n  o r b i t  period, the  longi tude o r i e n t a t i o n  of t he  ground t r a c k  w i l l  a l s o  

change i n  response t o  the  long term per turba t ion .  The r e s idua l  per tur -  

bat ions themselves a re  s t rongly  dependent on t h e  o r i en ta t ion  of t h e  

ground t r ack  with respec t  t o  each longi tude harmonic. 

pec t  t he  evolution of  the  o r b i t  under resonant e a r t h  g r a v i t y  t o  be 

e s s e n t i a l l y  described by a system of two coupled equations i n  t h e  longi -  

tude o r i en ta t ion  and semi-major axis of t he  s a t e l l i t e ' s  o r b i t .  We w i l l  

e a s i l y  derive c lose  approximations t o  these equations f o r  any nea r ly  

resonant o r b i t .  One of t h e  c r i t i c a l  questions i n  the  use of these  equa- 

t i o n s  i s  how many re levant  e a r t h  harmonics must be included i n  any appl i -  

ca t ion  t o  get a good representa t ion  of t h e  long term evolut ion.  Where 

no knowledge of  t he  longitude harmonics e x i s t s ,  an i n f i n i t e  number of 

them must be car r ied .  But i n  t h e  case of t he  ear th ,  it i s  shown t h a t  f o r  

the  high a l t i t u d e  24 hour s a t e l l i t e  (with per iod  equal t o  t h e  e a r t h ' s  

r o t a t i o n  period) it i s  h igh ly  probable t h a t  only resonant harmonics of 

second and t h i r d  order  need be r e t a ined  t o  maintain acceptable  accuracy 

Lrl the  equations over long periods of time. 

Thus, we may ex- 

A s  a reverse appl ica t ion  o f  t he  resonant o r b i t  evolut ion equations,  

we solve for t h e  underlying resonant longi tude g rav i ty  f i e l d  o f  t h e  e a r t h  

from a c t u a l  pos i t ion  da ta  3n t h ree  synchronous s a t e l l i t e s  over a th ree  

year period. Further  i nves t iga t ion  of these  equations using an e a r t h  

model based on recent  data revea ls  t h a t  a number of o ther  resonant o r b i t s  

of l e s s  than  24 hours may show s u f f i c i e n t l y  s t rong  long term e f f e c t s  t o  be 

use fu l  i n  discr iminat ing p rec i se ly  o the r  longi tude g r a v i t y  harmonics. 

L ,  

. 
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THE GROUND TRACK OF RESONANT ORBITS 

Figure 1 shows t h e  ground t r a c k  for a genera l  resonant  o r b i t  o f  

moderate i n c l i n a t i o n .  

I 

0, 

L 

Figure 1. Groand t r a c k  o f  a ResonaLit C i rcu la r  Orbi t  

The resoliant s a t e l l i t e  makes 

geczraphic longi tude (with t- and t whole numbers) before  the  ground t r a c k  

begins t o  repea t  a t ,  say, an ascending equator  c ross ing  of  from Greenwich. Now 

consider  t h e  geometry of t h e  o r b i t  i n  i n e r t i a l  space (Figure 2 ) .  

t, t h e  s a t e l l i t e  i s  a-ts , 6, from i t s  ascending node. The i n e r t i a l  longi-  

tude from i t s  node, d L  , i s  given by 

V orbits ( 0,) over radians of 

A t  time 



k 
0 
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Let us assume a prograde o r b i t ,  with t h e  e a r t h ’ s  o r b i t a l  r a t e .  

Thus, t h e  geographic longitude a t  S is:  

I n  the  resonant or cons tan t  ground t r ack  orbit;when x-x, 5 A A =  ZT-8, 

e, = z r r  . Let be the s a t e l l i t g s  o r b i t a l  r a t e ,  and 

$,% = $Awe , where z# and 2, a r e  a r b i t r a r y  r e a l  numbers 

a t  t h i s  po in t  i n  t h e  ana lys i s .  

tu rned  by t h e  e a r t h  s ince time zero. Between ground t r a c k  repe t ions ,  

e,= 3 L T M  with n i n  days. Then, s ince:  

A l s o ,  l e t  we* = Ge, t h e  longitude 

I I 

(1) becomes: 

8 

Therefore, t h e  ground t r a c k  repetion condition: 

, implies 
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From ( 2 )  : 

A X  ( a t  r e p e t i t i o n  of ground t r a c k )  

- n'( & - I )  z -  t a  

I 
Also  since f ~ l z w n  = ZLTTT a t  ground t r a c k  r e p e t i t i o n ,  

____c. e, 

which means t h a t  9, and must be whole numbers for resonant 

o r b i t s .  With a given f = / f ,  r a t i o ,  n '  i s  t h e  resonant, r e p e t i t i o n ,  

or synodic period i n  s i d e r e a l  days and P i s  t h e  number of o r b i t s  i n  t h e  

resonant  period. Equation (4) i n  ( 3 )  gives  

I 
~ Z S  r-n 

Thus, from ( 5 )  and (41, a s p e c i f i c a t i o n  of and 2, giv ing  t h e  

commensurate o r b i t a l  frequency,determineS r from n '  as a l e a s t  

cannon denominator o f  (4), and then  

resonant period. If r >n'  , gL.7z1 and t h e  s a t e l l i t e  per iod 

i s  l e s s  then  24 hours. If t - 4 '  , 2L-G?, , and t h e  

s a t e l l i t e  period i s  g r e a t e r  than  24 hours. 

2 , t h e  g loba l  c i r c u i t s  i n  t h e  
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RESONANT ORBIT EVOLUTION 

Consider t h e  pe r tu rba t ion  forces  on t h e  resonant c i r c u l a r  o r b i t .  

The on ly  com2onen-t of these forces  which cafi e f fec t  a change i n  t h e  semi- 

major axis o f  t h i s  o r b i t  i s  t h e  along t r a c k  component 

This  i s  so because t h e  instantaneous semimajor axis of an o r b i t  i s  only 

a func t ion  of i t s  t o t a l  energy, k ine t i c  and two-body p o t e n t i a l .  

fo rce  which does work on and thus  e f f e c t s  t h e  t o t a l  energy of  t h e  c i r c u l a r  

o r b i t  sa te l l i t e ,  i s  t h e  along t r a c k  force.  

f~ (Figure 3 ) .  

The on ly  

Figure 3. Along t r a c k  per turba t ion  fo rce  on a c i r c u l a r  resonant o r b i t  

I n  an e l l i p t i c  o r b i t  of t h e  earth the t o t a l  two body energy of a 

z a t e l l i t e  is:  

where U i s  the semimajor axis. To f i rs t  order,  then, t h e  change i n  t h e  

semimajor a x i s  due t o  a s m a l l  change of energy L\E i s ,  
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From (61: 

But f o r  a c i r c u l a r  o r b i t  s a t e l l i t e ,  t h e  work done by a smal1,orbit 

varying, along t r ack  fo rce  FT adds energy AI!? t o  t he  s a t e l l i t e  

each Y orb i t s ,  amounting to :  

d 

A E  ( p e r  r o r b i t s )  - c 27i-arFT 

where /$ i s  the  o r b i t  averaged force  def ined by: 

xrsv 
( 9 )  

c 

c- 

Combining Equations ( 8 )  and (71, the  evolut ion of  the  semimajor a x i s  of  

a nea r ly  c i r cu la r  o r b i t  under a small perturbing force,  must be governed 

by the  difference equation: 

- 4q-6rFT A A  (pe r  r o r b i t s )  - - - - 

P e  

In  ?.he resonant case, r o r b i t s  a r e  made i n  n r  s i d e r e a l  days so  t h a t  i n  

time uiits AT of  n r  s i d e r e a l  days ( t h e  synodic per iod) :  
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. 
Considering and AT small i n  terms of t h e  long term o r b i t  

evolution, (10) can be w r i t t e n  as a d i f f e r e n t i a l  equation with respec t  

t o  t i m e  At i n  s i d e r e a l  days bT = A ~ / M '  ) as: 

length  u n i t s  
s i d e r e a l  days 

It i s  t o  be understood, of course, t ha t  equation (11) i s  an r o r b i t  

averaged d i f f e r e n t i a l  eqaation. To derive t h e  o r b i t  averaged longi tude 

motion of t he  i n i t i a l l y  constant  ground t r a c k  under a sus ta in ing  orbit 

expanding force  Fr , we r e s o r t  t o  Kepler 's  per iod l a w :  
c. 

Thus, t o  f i rs t  order,  i f  t h e  semimajor a i s  changes by da ,  t he  period 

changes by 

4 

2ut  (10) i n  (12) gives the  per iod change due t o  

day as : 

f7 a f t e r  one synodic 

27% - 
AT ( i n  one synodic day) - 1z.X a. rFT -p- 

(11) 

If, i n  o r b i t s ,  t he  s a t e l l i t e ' s  period changes by , where 
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i s  i n  u n i t s  of s i d e r e a l  days, then the  s a t e l l i t e  r e tu rns  t o  i t s  ascending 

equator  crossing i n  r (5 + 4%) days. The e a r t h  meanwhile has 

b 
But s ince  

ZLTTrAT& 

period. 

‘Tk= M , a whole number, t h e  equator  crossing i s  

w e s t  of where it w a s  a t  t h e  beginning of t h e  resonant 

TAUS the d r i f t  r a t e  of a resonant o r b i t  a f t e r  1 synodic per iod i s  

1 ’ ( a t  one synodic day from resonance) = - ; L ~ M  Q7 . 
4 

Thus 
J a z  7 

S u b s t i t u t i n g  (lla) and (13) i n  (14) gives t h e  d r i f t  r a t e  w i t h  respec t  t o  

t h e  synodic period a t  the  f i rs t  synodic day as: 

(14) 

I n  the  second and succeeding synodic days, i f  the d r i f t  r a t e  and per tur -  

bat ions a re  small, t h e  cont inua l ly  ac t ing  r e s i d u a l  fo rce  will bui ld  up 

the  d r i f t  r a t e  l i n e a r l y  w i t h  respec t  t o  t h e  synodic period, according t o  

(15) whose elements may be t r e a t e d  a s  constants .  

sents ,  approximately, t h e  resonant,  long tern acce le ra t ion  of the  geogra- 

phic longitude o f  the  i n i t i a l l y  constant  or nea r ly  constant  ground t r a c k  of 

t h e  s a t e l l i t e .  

Thus (15) a l s o  repre-  

Or, t r e a t e d  as a d i f f e r e n t i a l  equation with respec t  t o  the  

- 10 - 
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elements a t  successive synodic periods; 

B a t  n f  s i d e r e a l  days = 1 synodic day, 

Thus (16) can be rewri t ten:  

rad ians  
synodic daf 

radians 
7 

s i d e r e a l  day- 

(16) 

The r e l evan t  ( longi tude and l a t i t u d e )  e a r t h  per turba t ion  forces  (pe r  

u n i t  mass) can be conventionally wr i t t en  as  F = F' F J 

where d. i s  t h e  i n i t i a l  or instantaneous rad ius  of t he  c i r c u l a r  

resonant o r b i t .  Writing 

t o  : 

&, = h/b we can s implify (11) and (17) 
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EVALUATION OF THE RESONANT PERTURBATION FORCE I N  TEEMS OF GROUND TRACK 

COORDINATES 

We can now proceed t o  eva lua te  t h e  o r b i t  averaged per turba t ion  

forces .  The simplest  way of doing t h i s  appears t o  be i n  terms of t h e  

ground t r a c k  coordinates l a t i t u d e  and longi tude which a r e  t h e  coordinates  

of t he  conventional sphe r i ca l  harmonic expansion of  g rav i ty  given below. 

We take  the g r a v i t y  p o t e n t i a l  on t h e  c i r c u l a r  o r b i t  as the  conven- 

t i o n a l  assoc ia ted  legendre expansion: 

where Ro i s  the  mean equa to r i a l  rad ius  of t he  ea r th ,  t$ i s  t h e  l a t i t u d e  

of t h e  s a t e l l i t e  and i s  the  geographic longi tude.  By convention: 

?;; ,CU)  m.#o . The assoc ia ted  legendre polynomials 

a r e  defined as follows [Z]: 

r23 

I 

where [ 20a) 

A.  Zonal Gravity Forces 

The zonal g rav i ty  p o t e n t i a l  ( w=o 1 i s  not  dependent on longi tude.  

The l a t i t u d e  dependence of t h i s  p a r t  of t h e  p o t e n t i a l  can be expressed as: 
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a constant  term i f  n i s  even. Consider a t y p i c a l  s ing le  o r b i t  

ground t r a c e  of t h e  resonance case i n  Figure 1. 
1 

Figure 4. Orb i t a l  Ground Track with Zonal Per turbat ion Forces 

4 

9 hvr, The l a t i t u d e  force a r i s i n g  from (21) i s  
x2qT 

tude dependence is:  

. Its  l a t i -  
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I 8 

Thus, 

tion with respect to the equator. With respect to the longitude of the 

descending equator crossing of the track, the azimuth d is an even 

function, but f f i ,evg~J is "odd" (See fig. 4). Thus the in- 

cremental work done by 

( bw = &A@, fT = a Fn,gvEd C O S d  de, ) is an odd func- 

tion with respect to the longitude of the descending equator crossing. 

Ffl ,fvfd is an odd function and f f i , ~ ~ ~  is an even func- 

/ 

I 

FnEVdon the satellite 
I ' 4  

4 

The integral of A W  , or the total work done by 6 , E V E d  over an 

orbit must therefore be zero, as it must be over orbits, or the 

"resonance" or synodic period . As long as the orbit remains circular 

the even zonals can have no long term influence on the longitude accelera- 

tion of the constant or nearly constant ground track. On the other hand, 

for the odd zonals, we can use the property of the ground track that 

cos(azimuth) is antiperiodic over 

Since fHjoDo is periodic over XI/. ; FTn 
Ava , or half the orbital track. 

I 4 

8 = FW,,,, cos(azimuth), is antiperiodic over h'/2 . Thus the 

incremental work due to the odd zonals is also antiperiodic over 

or the total work due to them is zero over any number of single orbits. 

Concluding,' as long as the orbit remains circular, the perturbing 

zonal harmonics of gravity can have no long term influence on the longi- 

tude acceleration of the resonant orbit. 

- 14 - 



- B. Longitude Gravi ty  Forces 

With r e spec t  t o  the  per iodic  longitude g r a v i t y  forces ,  s ince  cos& 

i s  a n t i p e r i o d i c  and s i n 4  i s  per iodic  over a h a l f  o r b i t a l  t rack ,  we would 

l i k e  t o  f i n d  those  longi tude harmonics Hm whose l a t i t u d e  fo rce  components 

are a n t i p e r i o d i c  and whose longi tude fo rce  components a r e  per iodic  over 

hl/, . With such forces ,  t h e  long t r a c k  component i s  per iod every 

h a l f  o r b i t ,  o r b i t ,  and so  f o r t h  t o  r o r b i t s  o r  t h e  synodic per iod 

(See Figure 5 ) .  There does not  seem t o  be a p o s s i b i l i t y  of t h e  along 

t r a c k  f o r c e  having p e r i o d i c i t i e s  o r  a n t i p e r i o d i c i t i e s  over spans l e s s  

than  &throughout t h e  resonant ground t r a c k  (bu t  see  Appendix A). 

Therefore,  i n  t he  genera l  case f o r  an  a r b i t r a r i l y  i n c l i n e d  o r b i t  and 

longi tude  placement it appears t h a t  the mean value of t hese  Ay% per iodic  

f l u c t u a t i o n s  (when found) w i l l  no t  be zero.  

c u l a t i o n  of t he  genera l  case of a spec i f i c  longi tude harmonic f o r  a 

I n  f a c t  every d e t a i l e d  ca l -  

resonant  o r b i t  has shown so fa r  t h a t  on ly  when t h e r e  i s  p e r i o d i c i t y  i r -  

F ~ V I W  over , can the  o r b i t  average of <",,, be d i f f e r e n t  from 

zero.  A n  example of t h i s  ca lcu la t ion ,  f o r  t h e  o r b i t  averaged e f f e c t  
$ 

of t h e  H= harmonic on the  1 2  hour resonant o r b i t  r=Z,  n = f  1, 
t 

i s  found i n  Appendix C .  These d e t a i l e d  ca l cu la t ions  suggest t h a t  

can always be decomposed i n t o  the  product of orthogonal func t ions  i n  the  

i n t e r v a l s  o r  2x1,~  ( a  f u l l  o r b i t ) .  Such a decomposition would 

al low us t o  make f i r m ,  i n s t ead  of merely suggestive conclusions as t o  

FTHn 

t h e  re levancy of any p a r t i c u l a r  harmonic on a p a r t i c u l a r  resonant o r b i t .  
I 

However, i n  those cases where we can show a n t i p e r i o d i c i t y  of FTflM i n  

o r  217% , it i s  evide9t  t h a t  those p a r t i c u l a r  harmonics a r e  - not  

r e l evan t  t o  t h e  o r b i t  evolut ion we are  i n t e r e s t e d  i n .  
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Figure 5 i l l u s t r a t e s  t h e  method we will use t o  show p e r i o d i c i t y  or 
1 

a n t i p e r i o d i c i t y  of FTnM over X1/, . In achieving p e r i o d i c i t y  of  

over XI/, (from 0 t o  0 i n  Figure 5 > ,  we can 

follow the  changes of t he  longitude harmonic forces  f i r s t  from Q t o @  

a constant  l a t i t u d e  path, then f r o m e  t o  0, a constant  longitude path.  

This scheme i s  suggested by the  form of t h e  longi tude and l a t i t u d e  force  

components of  the longi tude harmonic H H ~  ( w  f o j  . It may be r e a d i l y  

shown (following t h e  development i n  Ref. [%I) t h a t  the  longi tude and 

l a t i t u d e  dependencies of these  force  components (der ived  from the 

grad ien t  of Eq. ( 2 0 ) )  are:  

ana 
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(24b) 

Further, examination of (23) shows t h a t  i$ n d h  i s  even : 

and 
I ~'c&) = F 1-4). 

A,H M A, W W  

Similar ly ,  (24) shows t h a t  i f  n-m i s  odd: 



and 
1 

F'cq) = - F C - @ ) .  
A, n w  A, b4M 

1 

Thus, i f  n-m i s  even, and we want p e r i o d i c i t y  o f  

(26) shows we can only  achieve s ta te@from@by way of t he  a)and c)forces .  

f T,nw Over 

But s ince  t h e  a)and c ) fo rces  

holds,  we have t h e  fol lowing 

a h a l f  o r b i t  i s  achieved f o r  

can only be achieved from s ta te  0 i f  (25a) 

general  result: p e r i o d i c i t y  of 

n-m even, if and only  if At/&=" o r  w = ~ [ ? z , i + , . . ~ *  

I 

F3 Mmover 

81% 

Sim-ilarly, if n-m i s  odd, (27) shows we can only  achieve t h e  per iodic  

s t a t e 0  from@by way of t h e  b)and d)forces,  which can be achieved from 

a o n l y  i f  (25b) holds. Thus we have t h e  a l t e r n a t e  result  t h a t  i f  n-m i s  
I 

odd, p e r i o d i c i t y  of 

M= 'TT [21,23,&5 ...) . 
over XI/, i s  assured i f  and on ly  i f  

B u t  from(3)and[$ the  h a l f  o r b i t  excursion i 5  : 
r,nw 

V!L 

Thus t h e  s t rong  presumption i s  t h a t  f o r  a s a t e l l i t e  which repea ts  i t s  

ground t r a c k  every r c i r c u l a r  o r b i t s  over n '  s i d e r e a l  days, t h e  g rav i ty  

harmonics 

t h e  per iod  of t he  s a t e l l i t e  a r e  given by: 

Hnw\ which are capable o f  producing a long term change i n  

- -  Y I - M  evevl, h t -  m ' = r  - .  
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Condition (2ga) i s  j u s t  t h a t  f o r  t h e  24 hour s a t e l l i t e  ( s e e  equat ion ( 4) ) .  

I n  f a c t ,  f o r  t h i s  s a t e l l i t e  wi th  a simple r e v e r s a l  of t he  p e r i o d i c i t y  

a r g m e a t s  above, we can show r igo rous ly  t h a t  a l l  t he  remaining longi tude 

harmonics, I\,,,,, ,n -w o d l  
of t h i s  o r b i t .  S i m i l a r l y ,  t o  guarantee a n t i p e r i o d i c i t y  of  

f o r  any resonant c i r c a l a r  o r b i t ,  (enabl ing  lis t o  ignore t h e  inf luence of 

, can have no long term e f f e c t s  on t h e  per iod  
i 

FT, nM over 

HH* fo: these purposes) t h e  necessary and s u f f i c i e n t  condi t ions  

a r e  t h a t :  

We can go a t  l e a s t  one s t e p  f u r t h e r  i n  e l imina t ing  a d d i t i o n a l  harmonics 

from was ide ra t ion  by u t i l i z i n g  t h e  p e r i o d i c i t i e s  of  both c o s &  and s i n 4  

over a f u l l  o r b i t  ai, . Since a f u l l  o r b i t  r e t u r n s  t h e  ground t r a c k  

t o  the  same l a t i t ude ,  

l ong i tx l e  dependent f a c t o r s  of t h e  harmonic forces ,  cos PI Lh-hnw) 

s i n  wtk-)~,,,,,) . Rewriting (25b), we see such a n t i p e r i o d i c i t i e s  a re  

poss ib le  f o r  2 A, arb i t ra ry ,only  i f :  

/A 
we only need examine t h e  a n t i p e r i o d i c i t i e s  of the 

and 

Ir, 

. Bu-t s ince  

? J q l - M l / r )  from (28), we have t h e  genera l  r e s u l t  t h a t  

- 20 - 



a d d i t i o n a l  "non resonant"  harmonics on a constant  ground t r a c k  o r b i t  

( i n  t h e  sense considered here)  a r e  those HMM f o r  which: 

I n  passing we can note  t h a t  (31) should a l s o  be a v a l i d  d iscr iminant  of 

non resonant  harmonics on a cons tan t  ground t r a c k  e l l i p t i c a l  o r b i t  as 

wel l .  

s i n g l e  o r b i t )  t h e  f l i g h t  path a n g l e i s  s t i l l  per iodic  over zAf,- . 
The t a n g e n t i a l  component of t he  r a d i a l  g r a v i t y  pe r tu rba t ion  fo rces  [a l l  

wi th  longi tude dependence cos M L A  - ARM) 

a yL f o r  a l l  m given by (31). 

This i s  because (assuming negl ig ib le  change of a l l  elements i n  a 

] are thus  a n t i p e r i o d i c  i n  

The c r i t e r i a  (30) and (31) enable us t o  ignore a l a rge  c l a s s  of 

M ' l r  with the  lowest harmonics on the  resonant o r b i t  ( s p e c i f i e d  by 

common denominator). B u t  d e t a i l e d  ca l cu la t ion  shows they  appear t o  ex- 
haus t  t h e  ignorable  harmonics f o r  only the  12 and 24 and 35 hour o r S i t s .  

It can be v e r i f i e d  t h a t  a s i n g l e  simple formula equivalent  t o  t h e  pre-  

sumably resonant harmonic c r i te r ia  (23k,b, L) , a t  leas t  f o r  

r 7n'  

- 

( synchronous and subsynchronous o r b i t s )  is: 

where m and n a r e  p o s i t i v e  numbers and p i s  such t h a t  H 3 bl 

( s e e  appendix A f o r  a discussion of t h e  supersynchronous, Y ' L  M > 

resonance selector) ,  8ut (32) i s  just t h e  resonance condi t ion given by 

Allan 131 f o r  subsynchronous s a t e l l i t e s  of  d a i l y  ground t r a c k  r e p e t i -  

t i o a  c n = I )  . Allan 's  theory ( i n  terms of Lagrange Is plane tary  

I 

I 
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equat ions,orbi t  averaged over a resonant per iod  of a day) thus  appears 

t o  be r e a d i l y  extendable f o r  a resonant o r b i t  of any 

commensurate period by way of ( 3 2 ) .  ( see  Sect ion 5). Previous t o  Allan's - 
: 

development the  author  had ca l cu la t ed  /$ ~ through n=)ul=4- f o r  

t h e  synchronous s a t e l l i t e  d i r e c t l y  from t h e  sphe r i ca l  harmonic p o t e n t i a l  

[ 20), h ,  . E41 
The r e s u l t s  were ( f o r  t he  n-m even, re levant  harmonics) : 

(:<here a, = semimajor axis i n  e a r t h  r a d i i ) .  

U t i l i z i n g  the same technique of d i r e c t  t r igonometr ic  reduction fa- 
1 

on the  12 hour s a t e l l i t e  ( P = 2, H I S  1 ) , the F7;m 
author  has shown {see  Appendix C )  that  through 4th order  (n=h), t h e  only 

re levant  harmonics a r e  H2 and H4, with: 

- 22 - 



Simi la r ly ,  f o r  t h e  8 hour s a t e l l i t e  through 3rd order  (n=3),  t h e  only  

r e l e v a n t  harmonic w a s  found t o  be H s 3  with: 
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EVALUATION OF THE GENERAL RESONANT, ORBIT AVERAGED, ALONG TRACK FORCE 

I N  TERMS OF KEPLERLAN COORDINATES 

I n  t he  previous sec t ion ,  though we developed a number of c r i t e r i a  

by which we could r e j e c t  a c l a s s  of nonresonant harmonics, we could 

no t  accomplish t h e  two necessary and s u f f i c i e n t  t a s k s  f o r  a t r u l y  suc- 

c e s s f u l  resonance theory: 

1. To f ind  the  s i n g l e  necessary and s u f f i c i e n t  c r i t e r i a  which 
determines Hm t o  be e i t h e r  resonant o r  nonresonant on a 

given commensurate o r b i t ,  

2. To determine e f f i c i e n t l y  by a simply eva lus ted  formula, t he  
i n c l i n a t i o n  func t ion  o r  i n t e g r a l s  represent ing  t h e  o r b i t  
averaged behavior of t he  resonant s a t e l l i t e .  

We w i l l  see i n  t h i s  s ec t ion  t h a t  through t h e  expression of the  pe r tu r -  

ba t ion  fo rce  i n  terns of Kepler ian elements, i n s t e a d  of ground t r a c k  

elements, these  ma jo r  . tasks can be e f f i c i e n t l y  accomplished. 

We have seen from the  previous development (Equation 18) t h a t  t he  

nondimensional semimajor axis ( a,) of the  resonant  o r b i t  evolves a t  

a rate, i n  u n i t s  of l / s i d e r e a l  days, given by: 

c_ 

Uhere F+ i s  t h e  P o r b i t  averaged along t r a c k  fo rce  due t o  a d i s -  

turbing harmonic as a f r a c t i o n  of t he  p r inc ipa l ,  r a d i a l ,  g r a v i t a t i o n a l  

a t t r a c t i o n .  Over one synodic per iod ( n f  days), t h e  evolu t ion  of t h e  

semimajor axis i s  thus  given by: 

(33 semimajor axis u n i t s  
synodic days 

But t h e  instantaneous evolut ion of t h e  semimajor 
c3$ c53 

axis i s  given a l so  from Lagrange's p l ane ta ry  equations,,as: 
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I n  Equation (371, i s  any d i s tu rb ing  p o t e n t i a l  funct ion,  whose 

g rad ien t ,  by de f in i t i on , i s  t he  dis-turbing fo rce .  )(" i s  t h e  mean 

anomaly a t  t = O  (epoch) (or t h e  modified mean anomaly), def ined  from t h e  

mean anomaly M by: 
t - 

M = + f  

Since t h e  o r b i t  we are consider ing i s  c i r c u l a r ,  we can a r b i t r a r i l y  

pdt  b/ ( t h e  argument of per igee)  equal t o  zero.  Then M i s  a l s o  t h e  

t r u e  anomaly counted from the  ascending node, o r  8 ( s e e  Figure 6 ) .  

Thus, 
t * 

8 ( c i r c u l a r  resonant  o r b i t )  = +dik + )( s 0 

We note  i n  passing t h a t  from i t s  d e f i n i t i o n  above, f o r  t h e  resonant 

c i r c u l a r  o r b i t  

A t  any t i m e  i n  t he  dynamics, a l l  other elements being he ld  f ixed .  

Separa t ing  (37) and i n t e g r a t i n g  over r o r b i t s  i n  n '  days, mder  t h e  

assumption t h a t  ( %/w5u ) changes negl ig ib ly  i n  t h i s  t i m e , w e  nave 
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But from Kepler 's  per iod law: 

Mi th  the  time units of* i n  s i d e r e a l  days. Equations (41) and (42) i n  
0 

(40) gives 0- over a resonant time period CLS: 

(43) 
semimajor axis u n i t s  

synodic days 

Equating (43) w i t h  (36), t he  nondimensional t- o r b i t  averaged along 

t r a c k  force  i s  given from t h e  averaged p o t e n t i a l  der iva t ive ,  by; 

L_ 

Now, i n  order  t o  f i n d  

pot.entia1, i n  our case, t h a t  a r i s i n g  from a longi tude gravityharmonic Hnm , 
i n  terms of a s e t  of mutually exclusive o r b i t i a l  elements including x 

3%. , we have t o  express the  d is turb ing  
AX* 

1 . 
f 3 

Allan has  s m a r i z e d  previous developments [6], [7] of the  longi-  

tude harmonics in to  s e r i e s  i n  terms of t h e  ord inary  Keplerinn elements 

a, e, L, A, M 

s t a t e  t he  r e s u l t  f o r  zero e c c e n t r i c i t y .  

)Aflm (. WI fO) 

t ion ,  i n  terins of t he  elements of a c i r c u l a r  o r b i t  ( s e e  Fig.  6) .  

and M or f ( t h e  t r u e  anomaly). Here ve only 

Each longi tude sphe r i ca l  harmonic 

i n  the  expansion (20), gives r i s e  t o  a p o t e n t i a l  func- 
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where j -= , signifies the real part of 

and the dynamics (epoch) begins at zero sidereal time, o r  when the 

Greenwich Meridian passes through the Vernal Equinox. 

Figure 6. Circular Orbital Elements at time t 

The inclination functions are given as: 

where JL’LhAI;= h-M . 
NOW since 3% = a u  - f o r  the circular o r b i t ,  From (45): 

3 0  1 
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J 

(47) 

We can include the imaginary p a r t  of j 6 1 , ~ y  i n  t h e  exp. term 

, of  (47) by def ining a phase angle s,, such t h a t :  

We see from i t s  de f in i t i on  i n  (48a) t h a t :  

With the  r e s u l t  of (48), t he  r e a l  p a r t  of (47) i s  r e a d i l y  evaluated 

and the  p o t e n t i a l  der iva t ive  becomes 

- 28 - 



1 assiuning constant  A over  t h e  resonant per iod.  L e t  % be t h e  

nodal argument a t  t s 0 .  Then 8 = 0o+b?& , assuming a constant  

Under t h e  bas ic  assumption of constant o r b i t a l  elements over t he  

r e l a t i v e l y  sho r t  resonant per iod n ' ,  s , p  and S1p w i l l  be 
8 1 

4 t =n 

cons tan ts  and t h e  i n t e g r a l s  o f  (51) can be evs lua ted  as: 
1 

But f l ~  and ue are simply r e l a t ed  b i  the  constant  ground t r a c k  

condi t ion,  Equation (4) : 
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with d s  i n  u n i t s  of radianslday.  

From (54a) ,  (54b), and (52b), 

where 

depending on the i n t e g r a l  vs lues  o f  n, m, p, r and n '  f o r  t h e  o r b i t  

and harmonic i n  quest ion.  
1 4 

If g ' f o ,  n'6& = 2 ' f l ( k $  k&;-c),and J;F)Cbfp t n 1 6 2 p ) = s $ s , p  

I n  t h i s  case then a l l  t he  n+ l  i n t e g r a l s  of (50) s r e  zero.  

when k'= 0, n'&,,, =O and each i n t e g r a l  so lu t ion  from 

i s  an indeterininate form. To resolvz t h i s  case we seek formally:  

However, - I 

A 
(53) 

l 

I + i f  [5rd c ":p tn's:,) -5rrJ6' 
1Pj 

{ 5 t r ) 6 : p p d 5 ; ; )  -4 + 'er5s;p5,hl'&&) . 1 n'SSp+O n b 
1 

1;m;t - - 4 *(d J n p )  - A,, 
I By L 'Hopi ta l I s  ru l e ,  t h i s  l as t  l i m i t  i s  the  l i m i t  of  t he  ra+,io of t h e  

de r iva t ive  of the nuqerator  t o  t h e  de r iva t ive  of t h e  denominator with 

respec t  t o  [ n ' c p )  as n 6,,,+0 or :  

, 
8 1  
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Fron (53) w? note t h a t  the average force i n t e g r a l s  can a l s o  be zero i f  

n - n p  = O  , but then from (551, w' +o , which case has  

a l r eady  Seen covered. 

We thus  have the  genera l  r e s u l t  t h a t  for a r e m n a n t  or constant  

ground t r a c k  c i r c u l a r  o r b i t ,  only those harmonics which s a t i s f y  t h e  

condi t ion:  

o r  

f o r  

averaged along t rack forces .  

p = 0, i , ~ ,  can produce r e s i d u a l  o r  long term o r b i t  

But t h i s  i s  p rec i se ly  t h e  resonant hamonic  zondi t ion presumed i n  

( 3 2 )  and here  shown r igorously.  We have thus  shown t h a t  Allan 's  one 

day resonance theory r3] M S I  €or c i r c u l a r  o r b i t s  i s  r e a d i l y  

extendable t o  any number of synodic days. (me extension i s  made by sub- 

s-Lituting PId for i n  Al lan ' s  r e s u l t s ) .  

I 

/ 1 

To complete t h e  ca l cu la t ion  of t he  averaged along t r s c k  force  f o r  

any constant  ground t r a c k  o r b i t  k i '  ) , Hfi, i s  resonant 
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on it i f  a s ing le  p o s i t i v e  ( o r  zero) p e x i s t s  which satisfies (58) .  

Given n, m, r and n', of  course, t h e r e  can be - only  one p 

s a t i s f y  (58). 

zero and with t h i s  s i n g l e  resonant n, m, p combination [ sa t i s fy ing  (58) ]  

i n  mind, t h e  r o r b i t  averaged d i s tu rb ing  funct ion due t o  

i s  [with t h e  r e s u l t s  of  (57) and (58) i n  t h e  form 

(53) and then  (50) 1: 

which does 

Tl?us on ly  one of t h e  n+ l  i n t e g r a l s  of  (50) can be non- 

( resonant )  

, i n  ~ - 2 f = i ~ a 7 ~  
J 

F i n a l l y  we would l i k e  t o  express  t h i s  d i s tu rb ing  func t ion  i n  terms of 

t h e  longi tude of t h e  constant  equator  c ross ings  

ground t r a c k .  (see Fig .  7 ) .  

xk i n  the  resonant 

Figure 7. Orbi ta l  Parameters a t  t = O .  

- 32 - 



The s a t e l l i t e  w a s  a t  i t s  ascending equator  c ross ing  j u s t  previous 
I 

t o  t h e  epoch a t  5 when the  Greenwich Meridian w a s  a t  6’ , Met’ 
w e s t  of “d . We assume, as before,that t he  o r b i t a l  parameters 

(wi th  t h e  modified mean 

resonance per iod.  Then 

anomaly) su f fe r  neg l ig ib l e  change over t h e  

s ince  e, = W 5 t  rrnJ = r/Ha , 4 

E l u s  , t h e  longi tude of t he  ascending equator  c ross ing  j u s t  

previous t o  t h e  epoch i s  given by: 

Equation (a i n  (59) gives t h e  averaged d i s tu rb ing  func t ion  as :  

F ina l ly ,  it makes no phys ica l  difference i n  our arguments whether we 

reference the  o r b i t  t o  any of t h e  r d i s t i c t ,  constant,ascending or 

descending, equator  crossings ( W l o n g i t u d e s  i n  t o t a l ) .  The r o r b i t  

averaged d i s tu rb ing  force  on the  constant ground t r a c k  i s  obviously 

independent of t he  s p e c i f i c  longitude or c r b i t  t i m e  re fe rence .  

We can f i n d  the  representa t ion  of the  fo rce  with r e spec t  t o  t h e  

o t h e r  2P-4 cross ings  by f ind ing  the r e l a t i o n s h i p  of t hese  crossings t o  

, t h e  ascending equator  crossing j u s t  p r i o r  t o  t h e  epoch. 
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From ( 3 )  and (41, t h e  cons tan t  ground t r a c k  extends Z T & l A ~ [ r / H ~ ) e ~  

c 2r( r- n')  
a r e  2P equally spaced equator c ross ings  i n  t h i s  span, t hey  w i l l  be 

separa ted  by x Iron ' )  rad ians .  Thus t h e  successive equator 

crossings, from the o r i g i n a l  one ca l cu la t ed  i n  (60),are g iven  by 

rad ians  i n  geographic longi tude .  Thus, s ince  t h e r e  

r 

(62) 

W'ere A = 
/ 

crossings),Solving (62) f o r  

p a r t  of (61), t h i s  p a r t  becomes: 

I,?., 3,...zr--j (odd f o r  descending and even f o r  ascending 

and s u b s t i t u t i n g  t h i s  i n  t h e  cos.  

- ~ t t J [ ~ ~ X L - X n m > + S n ~  ~ i ~ m ~ ~ ~ ~ - f i ~ r l *  

B u t  from t h e  resonance condition (581, 

must be a pos i t ive  i n t e g e r .  Thus Pl T A  I - H?j-) = r A  (w-n  +Zp) 

which must, f o r  the resonant o r b i t ,  be some i n t e g r a l  (nega t ive  o r  p o s i t i v e )  

Wn'/, = O - Z P  , which 

mul t ip le  of T. 

We see from t h i s  tha t  f o r  1 even, o r  the ascending equator  

c ross ings  

exac t ly  as i n  (61).  Furthermore, i f  I ~ - a . + z p )  i s  - even ( o r  zero) t h e  

force  i s  a l s o  given by (61) w i t h  respec t  t o  a l l  t h e  descenaing equator 

c ross ings .  Only when I m - ~ ' + z P  I i s  - odd w i l l  t he  forin f o r  t h e  

Lo5 w-rr;C[ j-nyr)=j i , E J M r A [ @ - &  soand t h e  fo rce  i s  expressed 1 J A 
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force with respect to the descending equator crossings be different 

than (61). Since 2 p  is always even, and n>/m , this latter 
condition is fulfilled if n-m is odd. 

form (61) if we write a new phase angle 

not only with cH,M) 

node 1 is being considered. 

We can cover all cases by the 

L i t l , m , f )  which varies 

but with whether the descending o r  ascending 

Let 

Then we can write (61) in the general form: 

Mhere J=I  refers to the geographic longitude of any descending equa- 

tor crossing, and , A s 2  refers to any ascending equator crossing 

of the resonant orbit. Summarizing these results, from (64) and (44), 

ti:? nondimensional r orbit averaged along track force on the resonant 

orbit ( H I r )  is given as the sume of all relevant n, m terms discrimi- 

nated by ( 5 8 ) :  
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b 

wlhe re : 

t h e r e  being on ly  one i n t e g r a l  or zero value of 

f o r  each r e l evan t  H,, on a resonant c i r c u l a r  orb i t ,  

fl [from ( 6 5 ~ ) ]  

L = /  for descending equator  crossings, 

f o r  ascending equator  crossings,and 1 5 2  
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ORBIT EVOLUTION EQUATIONS FOh CLRCULAR EARTH RESONANT ORBITS 

Using the  r e s u l t s  of t h e  las t  sec t ion  on the  r o r b i t  averaged 

fo rces  due t o  t h e  longi tude harmonics, t h e  long term semimajor axis 

change of  the  resonant  o r b i t  i s  given from (65) i n  (18) as: 

S imi l a r ly ,  t h e  r o r b i t  averaged geographic longi tude ( xp) d r i f t  

r e s u l t i n g  from the  resonant  forces  i s  g i v m  from (65) i n  (19) as: 

The parameters !, p and l f l J H )  are  def-ined i n  (65e-d), as i s  t h e  
I 

i n c l i n a t i o n  f h c t o r  FiCc'p and 6 ' L R , N , 1 )  . 
It snould be noted t h a t  (66) and (67) apply s t r i c t l y ,  on ly  t o  an always 

c i r c u l a r  o r b i t  s a t e l l i t e .  This condition is ,  of course, immediately 

v i o l a t e d  as soon as the  per turba t ions  which dr ive  these  equations (as 

we l l  a s  o the r  per turba t ions)  are introduced. I n  addi t ion ,  t he  equations 

were der ived with reference s p e c i f i c a l l y  t o  the per turba t ions  from 

t h e  condi t ion of constant  ground t rack .  They may be thought of as 

g iv ing  the lead ing  term i n  an expansion f o r  t h e  d r i f t  about t he  reso-  

nance con l i t i on .  With respec t  t o  o r b i t s  whose equator  crossings have 
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an i n i t i a l  drift r a t e ,  these  equat ions,  as s t a t e d , a r e  i n  e r r o r  even 

a t  t i m e  zero. However, numerical t r a j e c t o r i e s  have confirmed t h e i r  

adequacy i n  p red ic t ing  the  o r b i t  evolu t ion  of many near  resonant  

s a t e l l i t e s  with appreciable  d r i f t  r a t e  and moderately small eccen t r i c i t i e s [8 ] .  

(A l l an ' s  paper E33 gives more information 'on t h e  magnitude o f  t h e  o r b i t  

acce le ra t ion  a r i s i n g  from nonzero eccen t r i c ty ,  nonzero d r i f t  r a t e ,  t h e  

obla teness  of t h e  ea r th ,  as w e l l  as sun and moon a c c e l e r a t i o n s . )  

most important f e a t u r e  of these  equat ions i s  t h a t ,  considered e i t h e r  as 

evolving from a constant  o r b i t  o r  near  constant  o r b i t  s ta te ,  on ly  the  

va r i ab le s  time h a  ( O R  x') 
values .  

from i n i t i a l  condi t ions under t h i s  assumption and checking t h e  change 

i n  t h e  o the r  va r i ab le s  ( p r i n c i p a l l y  a ) of  t h e  equat ions.  This  has 

been done i n  t h e  case of t h e  24 hour s a t e l l i t e  under H , P ~  per turba t ions  

[9].These t e s t s  snow (67) t o  be e s s e n t i a l l y  a nonl inear  equat ion i n  

with constant  coe f f i c i en t s  determinable from i n i t i a l  condi t ions.  The 

coupled equation i n  t h e  nondimensional semimsjor a x i s  change a n  [ CL, = 4./LI) 

a l s o  may be thought of as having e s s e n t i a l l y  constant  c o e f f i c i e n t s .  

With these  remarks, (67) can be reduced t o  a simple pendulum equat ion 

[ t o r  A w l  nm ' 

t h e  i n i t i a l  condi t ions of t h e  near  constant  ground t r ack ,  with respec t  

t o  each relevant  harmonic, the  p o s s i b i l i t y  of  e i t h e r  c i r c u l a t o r y  o r  

l i b r a t o r y  d r i f t  of e x i s t s ,  coupled with long per iod  o s c i l l a t i o n s  of 

t h e  semimajor a x i s  descr ibed through (66) .  

' long term resonance'' o r  l i b r a t o r y  behavior i s  discussed i n  Sec t ion  9 .  

The 

and change apprec iab ly  from any i n i t i a l  

This can only be apprec ia ted  by i n t e g r a t i n g  ( 5 5 )  and (67) 

for each r e l evan t  harmonic H Depending on 

The cha rac t e r i s t , i c s  of t h i s  
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It has also been discussed in the literature previously in references 

[lo], [ll] and r121 for synchronous satellites and Ref. [13] for 

other resonant orbits. Here, we would just like to estimate the 

maximum long term effects the longitude harmonics may have on near 

circular subsynchronous resonant orbits which may have future geo- 

detic applications (see section 8). Precise measurement of the long 

term longitude accelerations on three operating synchronous satellites 

has already given an excellent discrimination of HZ2 and H33 [SI, as 

will be discribed shortly. The implementation of these effects to 

determine longitude variations in the earth's gravity field is 

extremely simple. Aside from a rough determination of the initial in- 

clination of the orbit, all that is necessary is to obtain good data 

on the geographic longitudes of the equator crossings of the near 

resonant satellite. In general, the additional disturbances of the sun, 

mooA and earth zonal gravity cannot be ignored where the loiigitude 

gravity effects (which are strongly dependent on inclination) are likely 

to be very weak. 
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DETERMINATION OF H 2 2  AND H 3 3  FROM 24 HOUR SATELLITE 9ATA 

In the case of the 24 hour satellites, numerical integration has 

shown that additional gra-vity perturbations to equation ( 6 7 )  are within 

the standard ieviations of the nodal acceleration observations presented 

in Table 1rSl. This data has been derived from almost three years of 

tracking record on the free gravity drift of syncom 2, 3 and the early 

bird satellite, all with nearly circular orbits. The gravity harmonics 

cvl,, S,, in Table 1 are defined from the Tfi,.,, A,,, of (20) as: 

C M l Y  = - T T y l M C 0 5 d h % 4  

s,, = - - ~ , , ~ s i ~ J w A m ~  

b conform to the common day of expressing the series of longitude 

harmonics. The normalized longitude coefficients Cn,,,, S,,are defined 
- 2_ 

- -  
fram which it can be shown that if all c,,, s are 1, the integral 

of the square of all the normalized harmonic fuictions over the Lqit 

sphere is 4 T .  

derived by a weighted least squares solution of (67) [more specifically, 

?sing the orbit averaged coefficients of (33) in (19) with r=y1= I ] ac- 

cording to the data in the table. 

H42 and H44. 

results for Z Z j 2  and H33 or an improvement in their standard errors. 

is concluded that the 24 hour data is not yet accurate enough or suf- 

ficiently widespread in longitude to allow a good determination of these 

1 

The harmonics HZ2 and H33 reported in Table 1 were 

I 

The data was also tested for H 3 1 ,  

These tests did not produce a significant change in the 

It 

other resonant harmonics through 4th order. 



3 N 
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SENSITIVITY AND DISCRIMINATION OF LONG TERM HARMONIC EFFECTS ON NON- 

SYNCHRONOUS RESONANT ORBITS 

The f a c t  i s  t h a t  only a l i m i t e d  number of harmonics a r e  i n  long 

The term resonance on a given commensurate o r b i t  [ i .e . ,  Eq.  (65c)] .  

p o s s i b i l i t y  thus  a r i s e s  of us ing  t h e  long term evolu t ion  of  these  

o r b i t s  t o  sense and d iscr imina te  these  p a r t i c u l a r  harmonics only.  

On a genera l  o r b i t ,  and consider ing the  per iodic  per turba t ions  

of a l l  the s a t e l l i t e ' s  elements, an i n f i n i t y  of  longi tude harmonics a r e  

a c t i v e .  In any g r a v i t a t i o n a l  ana lys i s  of l i m i t e d  s a t e l l i t e  t r ack ing  

data ,  a major problem i s  t h e  d iscr imina t ion  of  one harmonic e f f e c t  

from another.  The use of resonant  o r b i t s  i n  s a t e l l i t e  geodesy he lps  

to solve t h i s  problem by reducing t h e  s e t  of g r a v i t y  harmonics which 

a r e  t h e o r e t i c a l l y  ac t ive .  I n  addi t ion ,  resonance phenomena, charac- 

t e r i z e d  by accentuated and p e r s i s t a n t  e f f e c t s ,  a c t  as n a t u r a l  ampli- 

f i e r s  of inherent ly  very weak harmonic forces .  Resonance increases  

many f o l d  the s e n s i t i v i t y  of t hese  o r b i t s  t o  t h e  weak per turba t ions ,  and 

thus enables the  ana lys t  t o  d iscr imina te  r e a d i l y  these weak forces  

from 9 background of much s t ronger  ( b u t  no t  resonant)  per turba t ion  

fo rces  and observat ion noise .  To judge the  requi red  s e n s i t i v i t y  of 

the  long t e rm e f f ec t s ,  we can use t h e  accura te  t r ack ing  per iod of t he  

equator  crossings of "ear ly  b i rd" .  

expect t o  achieve resolut iol i  of t he  geographic acce le ra t ion  of a near  

c o a t a n t  ground t r a c k  t o  the  order  of O.ol~lO-~ rad. / s i d e r e a l  daf 

i n  about 30 synodic days of nodal t r ack ing  on the  lower- :J t i tude sub- 

zpchronous resonant s a t e l l i t e s .  With complete reduct ion  of t he  

r e l a t i v e l y  s t rong sun-moon e f f e c t s  of Si-weekly, monthly and longer  

This has  shown [SI t h a t  we may 
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per iods ,  we should be ab le  t o  reduce t h i s  r e s o l u t i o n  f u r t h e r .  Table 2 

g ives  a l i s t  of  commensurate o r b i t s  o f  less  than  24 hours and up t o  

t h r e e  sidereal days resonance per iod t o  i l l u s t r a t e  t h e  s e n s i t i v i t y  

and harmonic d iscr imina t ion  problem with r e spec t  t o  the  l i k e l y  long term 

e f f e c t s .  It i s  noted t h a t  f o r  each resonant o r b i t  except t h e  12 hour, 

t h e  second r e l evan t  harmonic [from ( 6 5 ~ 1 1  i's two orders  of n h igher  than 

t h e  f i r s t .  Since t h e  s t rength  of .each p o t e n t i a l  term fal ls  o f f  as d, , -n 

we can expect i n  genera l  t h a t  t he  leading ( lowest  n) harmonic w i l l  

a l s o  be dominant f o r  t h a t  resonant o r b i t .  However, t he  long term ef- 

f e c t s  a r e  s t rong ly  dependent on inc l ina t ion ,  w i t h  a d i f f e r e n t  dependence 

f o r  each harmonic. Thus it i s  necessary t o  consider  a range of i n c i i n a -  

t i o n s  t o  determine both t h e  s e n s i t i v i t y  and discr iminat ing powers 

of t h e  resonant o r b i t  with respec t  t o  t h e  r e l evan t  harmonics. The 

eva lua t ion  i n  Table 2 i s  intended to  be i n d i c a t i v e  of t h e  l i k e l y  o rde r  

of  magnitude of t h e  resonant acce lera t ions .  

curve i n  Figure 8 which, i n  turn,  i s  based on recent  s a t e l l i t e - g r a v i t y  

r e s u l t s .  

and appears t o  be a f a i r  f i t  f o r  the r e l evan t  resonant harmonics 

(n=MJM*l) through as far as i s  known t o  date .  The normalized 

harmonics Tflw are def ined from the non-normalized Shm by: 

It i s  based on the  

The form of  t h i s  "planning curve" w a s  suggested by W.M. Kaula 1141, 

HY)IV\ 

e_ 
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Figure 8. Tn, as a Function of n From Recent Satel l i te Results. 
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A s  s t a t e d  previously it can be shown [16] t h a t  t h e  normalized harmonics 

a l l  have a mean square amplitude of u n i t y  over the sur face  of t h e  geoid 

( a c t u a l l y  a sphere of u n i t  r ad ius )  i f  J b M ~ - I  . 
of 

t i v i t y  ( t o  the 0.01~10-~ rad. /s id .dsf  l e v e l  i n  

discr iminat ion of a s ingle  harmonic e f f e c t  appear t o  be good. 

c r imina t ion  i s  considered good i f  the  dominant (under l ined)  e f f e c t  i s  

l i k e l y  t o  be an order  of magnitude g r e a t e r  than  t h e  subdominant. 

can be seen from Table 2 t h a t  on ly  f o r  t he  8, 12 and 15 hour s a t e l l i t e s ,  

w i l l  30' i nc l ined  ( o r  m a x i m u m  payload) o r b i t s  be s u f f i c i e n t l y  s e n s i t i v e  

and d iscr imina t ing  to  harmonic e f f e c t s  i n  the  above sense.  

- 
The underl ined values  

L h  i n  Table 2 i n d i c a t e  those  resonant o r b i t s  where both sens i -  
.. 

30 synodic days) and 

D i s -  

It 

( t h e  14.4 

hour o r b i t  may be marginal) .  

what a r b i t r a r y .  

p r o p e r t i e s  of t h e  resonant o r b i t s  t o  t h e  maximum ex ten t  poss ib le  t o  be 

ab le  t o  define unambiguously as many r e l evan t  harmonics as poss ib le ,  

with a minimum number of observat ions.  It i s  noted t h a t  f o r  a l l  t he  

o r b i t s  i n  Table 2 except the  12 hour one an i n f i n i t e  s e r i e s  o f  sub- 

dominant harmoEics have the  same vrl o r  longi tude frequency a s  the  dominant 

harinonic. 

i n c l i n a t i o n  a!d major a x i s )  w i l l  never a l low an unambiguous discr imina-  

t i o n  o f  these  harmonics no matter how wide a longi tude survey of t h i s  

o r b i t  i s  made 

s h i f - t  manuevers). 

discr iminat ion between such wl cons tan t  harmonics i n  equat ion (67) which 

governs t h e  evolution of such o r b i t s .  

Admittedly, t hese  two c r i t e r i a  a r e  some- 

One would l i k e  t o  use t h e  a l r eady  s t rong ly  d iscr imina t ing  

Thus, i nves t iga t ing  only  a s ing le  resonant o r b i t  ( o f  constant  

by n a t u r a l  l i b r a t i o n  o r  onboard propuls ion longi tude-  

The t e c h n i c a l  reason i s  t h a t  t h e r e  i s  no longi tude 
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It has been proposed [l7] that the gravitationally sensitive and 

discriminating properties of resonant orbits discussed here, be used to 

define specific longitude variations in the earth's gravity field. If 

only one satellite of medium (30') inclination is available for such 

purposes, Table 2 shows that H33, H, and H,, may be detectable unambi- 

guously, in a reasonably short time, by simple single nodal longitude 

observations on 8, 12 and 16 hour satellites respectively. 

property of the latitude dependenceof the potential function [in 

particular, ELj') in (65a)l that for the H f i m = ~  (dominant) 

resonances, the leading subdominant effect (Hn+2,m ) can always be "tuned outtr 

(made zero) at one or more orbit inclinations above 30' [ 3 ] ,  141. 

Such higher inclination resonant orbits may be particularly useful, 

geodetically. In addition, the inclination functions F l L i )  for 

H n p  +n increase in sensitivity to L as n increases. The effect 

is that "tuning out" of the subdominant to the dominant tesseral ef- 

fect ( Hw,w+n) is also possible at specific inclinations closer to 

30' than the first "tuning out" inclination for the dominant tesseral. 

Thus, for example, a single geodetic 60° inclined satellite of 3, 4, 

4.8, 5 and 8 hour periods probably could unambiguously define H98, HT6, 

H55, H,, and H33 respectively in a reasonable length of time. 

pears from Table 2 [and a study of (65a)J that the strong resonances of 

higher order n (on orbits between 1.5 and 3 hours)  demand carefully tuned 

inclinations of greater than 60° to allow for sufficient one-orbit dis- 

crimination of effects. Of course, if other data on the harmonics can 

be used reliably as supplementary information, non (or weekly) discrimi- 

nating single orbit information may still be valuable. 

that all the one day resonances with periods greater than 1.6 hours 

It is a 

nwp 

It ap- 

Thus it appears 
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( reasonably drag f r e e ) ,  may be geode t i ca l ly  use fu l  i f  

conclude with the  observat ion from Table 2 t h a t  no resonant  o r b i t  of  

2 o r  more day synodic per iod  seeds t o  have geode t i ca l ly  u s e f u l  long temn 

e f f e c t s  except t he  16 and 14.40 hour s a t e l l i t e s .  

genera l ly  weaker than t h e  one day ones, s ince  t h e y  gene ra l ly  involve 

longer period, higher  a l t i t u d e  o r b i t s  of high order  H e f f e c t s .  

i54-5" . We 

These resonances are 

nm 
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LIBRATORY CHARACTERISTICS OF NEAR RESONANT ORBIT SATELLITES 

It should be c l e a r  from (67) t h a t  i f  t h e  i n c l i n a t i o n  and semi- 

major a x i s  undergo only  s m a l l  changes, t h e  long term longi tude d r i f t  

of a n e a r l y  constant  ground t r a c k  o r b i t  due t o  any r e l evan t  harmonic 

H 

i n t e g r a t i o n s  of t he  complete equations of motion have confirmed t h i s  

assumption f o r  a wide v a r i e t y  of resonant and near  resonant o r b i t s  

[9], r l l ] ,  r123. A s  such, t h e  d r i f t  as a funct ion of time (more 

p r e c i s e l y t h e  time as a func t ion  of d r f i t )  can only  be given exac t ly  

(and only f o r  a s ing le  harmonic e f f e c t )  i n  terms of an e l l i p t i c  

i n t e g r a l  [92, r121. However, we can e ' a s i ly  f i n d  t h e  d r i f t  - rate 

regime and a l s o  determine t h e  c r i t i c a l  or equi l ibr ium poin ts  of t he  

pendulum drift d i r e c t l y  from (67). 

l i b r a t o r y  d r i f t ,  e a s i l y  found, w i l l  be t h e  minimum o s c i l l a t i o n  per iod 

(about  t h e  s t a b l e  equi l ibr ium points)  and the  maximum d r i f t  r a t e  pos- 

s i b l e  f o r  "capture" i n  t h e  l i b r a t o r y  regime due t o  any re levant  harmonic 

w i l l  be analogous t o  t h a t  of a c i r c u l a r  pendulum. I n  f a c t  many nm 

Addit ional  information about t he  

We w i l l  take our s tandard pendulum equation f o r  t h e  d r i f t  due t o  

H i n  t h e  form: nm 

where, f o r  convenience, r e f e r s  t o  t h e  ascending equator  c ross ing  

longi tude.  A, i s  seen t o  be a pos i t ion  of s t a b l e  equi l ibr ium (Ae,s) 
2 'L 

i f  K,,>o , and unstable  equilibrium i f  I< lvlM <o. 

(68) 
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From (68) these positions are separated by 1 0 , s  - A,, = fx /m (69) v 

Equation (67) can be put in the form of (68) by rewriting (67) 

as 

vl I ‘L *L where Kc,,,= I Z T T  ~ ~ ( % ) w  FCLI n q  I pJ--/Sid-Aa3z, 

Now, since (0 , the positions of unstable equilibrium are given 
ulm- 

from (70) and (67) by writing: 
t 1 

wlAH,,, - A&,&) t f,/x = 6 l n , ~ , ~ )  Cor F,,,,>O’ 
or, equivalently [using (63) withk=2 and the fact that n-m is an 

integer or zero]: 

-’TT (n-m) 
he,, = L n  A M  

I 

Similarly, those of stable equilibrium for C H P 7 O  

(72) and (69) by 

are given from 

x,, - - - J-i- [Z -Ln-M; ; I  t A,, ‘ 
Z W  

0 a 

It may be noted that for low inclination satellites ( i 2 30 ), GMp 
is always positive [ 3 ]  and for these orbits (72) and (73) will be the 

equilibrium criteria. For example, for the 24 hour satellite the 

relevant Ha,,,, are all those for which n-m is even [see (65)] or 

VI-M =“K; )C=o,I,L,.~.  

lite, the unstable equilibrium ascending equator crossing longitudes 

J 

. Thus, for the low inclination 24 hour satel- 

are at: 
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ond t h e  s t a b l e  equi l ibr ium longitudes f o r  low i n c l i n a t i o n  24 hour 

s a t e l l i t e s  a r e  a t :  

The s i t u a t i o n  i s  j u s t  t he  reverse  for  i n c l i n a t i o n s  ( a t  medium and 

h igh  i n c l i n a t i o n s  f o r  example) where K,,,C . I n  these  cases  the  

- s t a b l e  -- equi l ibr ium longi tudes are given by (72) and t h e  unstable  by (73). 

Thus : 

I 

1 

f o r  resonant o r b i t s  where K M p < O  . 
O f  course, s ince  the  unstable  and s t a b l e  pos i t ions  a r e  equal ly  spaced 

around t h e  globe and separated by radians,  t h e r e  w i l l  be a t o t a l  

of  2 W  of these  around the  equator. There w i l l  thus  be m unstable  

longi tudes and m s t a b l e  longitudes i n  a l l  f o r  each re levant  H,, . 
The m a x i m u m  l i b r a t o r y  excursion of t h e  ground t r a c k  w i l l  thus  be 360°/m. 

w 

- 51 - 



Proceeding with t h e  i n t e g r a t i o n  of  t h e  pendulum equat ion ( 6 8 ) ,  
2 

t h e  va r i ab le s  [x)  and 

f e r e n t i a l  reduction : 

can be separa ted  by means of t h e  d i f -  

F i r s t  w e  rewri te  (68) t o  apply t o  1, = x , s  ; 

(78) i n  (79) permits us  t o  separa te  va r i ab le s :  

The i n t e g r a l  of (80)  i s  t h e  energy o r  f i r s t  J i n t e g r a l  of  t h e  pendulum 

e quat ion  : 

If t h e  i n i t i a l  condition 

be w r i t t e n  as: 

= iQ a* x=ho i s  given, then  (81) may 
I 

- 52 - 



I .  

From (821) we can e a s i l y  f ind  the  maximum d r i f t  rate change poss ib le  i n  

a resonant  o r b i t  due t o  each relevant  harmonic. This w i l l  occur with 

n e a r l y  exact  resonance ( h', 
s t a b l e  equi l ibr ium. Then the  d r i f t  r a t e  passing t h e  s t a b l e  po in t  

(Tbbl radians away from ), 
l i b r a t o r y  d r i f t .  

For  io = o /  = he,* = A,, - T/w , (82) reduces to :  

0 )  momentarily over  a pos i t i on  of  un- 

) w i l l  be t h e  maximum poss ib le  
e/ L.4. 

The maximum l i b r a t o r y  d r i f t  r a t e  (&t x=ke/s) w i l l  then be: 

Since t h e  m a x i m u m  acce le ra t ion  i n  the H,,libratory regime, from (79) 

i s  I wk%, I nw e; I ';nl ; w e  can w r i t e  ( 8 3 )  as: 

e 

Another parameter of  i n t e r e s t  with respec t  t o  the  regime of t he  

resonant  s a t e l l i t e  i s  t h e  minimum l i b r a t i o n  per iod.  This i s  t h e  

per iod of small "pendulum" o s c i l l a t i o n s  of t he  ground t r a c k  about t h e  

s t a b l e  equi l ibr ium poin ts  def ined  i n  ( 7 3 )  and (76). 

blways s u f f i c i e n t l y  s m a l l  (as i n  a simple pendulum o s c i l l a t i o n ) ,  

514 MCX-Xe,,) 

I f  X-X,, is 

can be replaced by M( h-x,,) and (79) becomes a 

simple harmonic equation 

(84) 
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From (85) we can e a s i l y  f i n d  t h e  s m a l l  o s c i l l a t i o n s  o r  minimum per iod  

l i b r a t i o n  about t h e  s t a b l e  equi l ibr ium po in t .  This minimum per iod  i s :  

,4 

Table 3 below gives  these  3 l i b r a t o r y  c h a r a c t e r i s t i c s  x,x, (X )HAA 
and 

Table 2. 

"average curve o f  Figure 8 and not  from any s p e c i f i c  s e t  o f  c o e f f i c i e n t s .  

A comparative case, from a c t u a l  data on 24 hour s a t e l l i t e s ,  i s  provided 

a t  t h e  bottom of Table 3. 

~T,d. f o r  t h e  most geode t i ca l ly  promising (underl ined)  o r b i t s  i n  

T h e y  c o e f f i c i e n t s  i n  t h i s  eva lua t ion  a r e  taken from t h e  
nm 

I /  

A s  mensioned previously,  t he  conplete  a n a l y t i c  t reatment  of  t he  

d r i f t  regime due t o  a s ing le  resonant  harmonic ( f o r  a c i r c u l a r  o r b i t )  

can be ca r r i ed  through by so lv ing  (82) i n  terms o f  e l l i p t i c  i n t e g r a l s .  

This w i l l  no t  be done here .  The form o f  t h e  genera l  so lu t ion  has been 

shown previously [93 as has  the  s p e c i f i c  s o l u t i o n  f o r  the  long per iod  

of l i b r a t i o n  of  one day resonant o r b i t s  [ 3 ] ,  [18]. A s  i n  the  c i r c u l a r  

pendulum, t h e  a c t u a l  l i b r a t i o n  per iod  i s  s t r o n g l y  dependent on the l ibra-  

t i o n a l  amplitude. I n  addi t ion,  Gideon e t  a l .  (1966) r18] has  a l s o  obtained 

complete ana ly t i c  so lu t ions  f o r  t he  one day l i b r a t i o n a l  resonances of  an 

eccen t r i c  o r b i t  due t o  s ing le  harmonics. 

/ I  

We note only t h a t  s ince  the  bas ic  averaged equat ion o f  l i b r a t i o n a l  

motion, (67), i s  nonl inear ,  t h e  complete so lu t ion  of the quas i - l i b ra t ion  

due t o  the  t o t a l ,  i n f i n i t e  s e t  of resonant  harmonics, canno-c be a simple 

superposi t ion o f  t he  ind iv idua l  harmonic s o l u t i o n s .  
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In fact there is no 

simple closed form. 

can be simply written down analogously to (82). 

the longitudes of the ascending equator crossing, (67 )  may be rewritten 

with the differential reduction (78) , as: 

second integral to (57) which is known in a 

However the first, or energy integral to (67) 

In terms of )!s2 or 

The integral of (87) in terms of the initial conditions 
4 h. = A, at X=JoCt.=o) is : 

Then, formally, we can separate variables in (88) and find the time as 

a function of drift from: 

x 

2t course,in all of this simple derivation, we have assumed the elements 

of the orbit to be essentially constant (in particular KnM ) not only 

over the resonance period n’ but over the long librational time t. 

While this will undoubtedly be a very good assumption for the semimajor 

axis (which in most cases will suffer small relative changes over long 

periods of time), it may not be so with regards to the inclination. 

Due to the gravitational action of the sun and moon combined with earth 



\ zonal  grav i ty ,  t he  o r b i t  plane of  a s a t e l l i t e  (otherwise unperturbed) w i l l  

p recess  about a plane between t h e  e c l i p t i c  and the  equator  causing a long 

per iod  s inuso ida l  l i k e  change i n  the sa te l l i t es  i n c l i n a t i o n  [Is]. The 

per iod  of  t h i s  i n c l i n a t i o n  change ( with an amplitude of t h e  o rde r  of 

about loo) can be as low as 10 years for c lose  e a r t h  s a t e l l i t e s .  

f o r  t h e  c lose  e a r t h  s a t e l l i t e s  

e q u a t o r i a l  precession predominates so t h a t  t h e  t o t a l  i n c l i n a t i o n  changy: 

i s  s m a l l .  Thus, it w i l l  probably be found t h a t  only the  r e l a t i v e l y  

weak fa r  e a r t h  resonances can be se r ious ly  d i s tu rbed  by these  plane 

precess ion  e f f e c t s .  

However, 

a, 2 4- , f o r  example) zonal  g r a v i t y  
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DISCUSS ION 

F i r s t ,  t h e  use of t he  term "resonanceR1 and "resonant o r b i t "  i n  

t h i s  r e p o r t  should be made c l e a r .  

phenomena occur when t h e  p e r i o d i c i t y  of app l i ed  loads a r e  c lose  t o  t h e  

n a t u r a l  (unforced) p e r i o d i c i t i e s  of t h e  system. Resonance i n  t h i s  

sense i s  charac te r ized  by g r e a t l y  ampl i f ied  v i b r a t i o n s  of t h e  system. 

Viewed i n t e r n a l l y ,  t h e  appl ied  loads are always i n  s tep,  o r  i n  t h e  same 

d i r e c t i o n  as  t h e  i n t e r n a l  p a r t s  upon which they  a c t  and so con t inua l ly  

increase  the  v i b r a t i o n a l  energy of those  p a r t s .  But viewed ex te rna l ly ,  

t h e  loads a re  pure ly  s inuso ida l  and so t h e  mean t r a n s l a t i o n a l  energy of 

t h e  cen te r  of mass of the system i s  unchanged. I n  t h e  case of t h e  

s a t e l l i t e  whose o r b i t  y i e lds  a cons tan t  ground t r ack ,  we have seen 

t h a t ,  with respect t o  c e r t a i n  harmonics, t h e  appl ied  loads a r e  not 

pure ly  s inusoida l  but contain a b i a s  component which d r ives  t h e  long 

per iod  l i b r a t i o n .  

what we have c a l l e d  resonance implies a change i n  t h e  t r a n s l a t i o n a l  

o r  o r b i t  energy of t he  s a t e l l i t e .  

of t he  o r b i t  can perhaps bes t  be cha rac t e r i zed  by t h e  e c c e n t r i c i t y .  

I n  an eccen t r i c  o r b i t  t h e  s a t e l l i t e  can be imagined as v i b r a t i n g  con- 

t i n u a l l y  about i t s  mean anomaly and semimajor ax i s ,  o r  mean r ad ius .  

I n  t h i s  repor t  we have chosen t o  ignore t h i s  v i b r a t i o n a l  aspec t  of 

t h e  o r b i t  by o r b i t  averaging t h e  d i s t u r b i n g  force  from t h e  o u t s e t .  

We do t h i s  because we a r e  here  only  i n t e r e s t e d  i n  long te,m o r b i t  

energy changes. I n  terms of t h e  mechanical resonance analogy, t h e  

f u l l  e f f e c t  would be equivalent t o  a mass-spring assembly on wheels 

I n  mechanical systems resonant 

I n  t h e  case of t h e  cons tan t  ground t r a c k  o r b i t ,  

The v ib ra t iona l ,  or i n t e r n a l  energy 
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v i b r a t i n g  and t r a n s l a t i n g  under the  a c t i o n  of a biased,  s i n u s o i d a l l y  

varying e x t e r n a l  fo rce .  We have only concerned ourse lves  with the  

s teady,  t r a n s l a t i o n a l ,  p a r t  of t h e  complete motion. I n  c e l e s t i a l  

mechanics these  changes are c a l l e d  secular ,  o r  e f f e c t s  which inc rease  i n  time 

\ 

without  apparent  l i m i t .  

of  t h e  d i s tu rb ing  fo rce  will a l s o  change s inuso ida l ly  over a long 

per iod of t ime. 

as i t s  proper analogy t h e  c i r c u l a r  pendulum. 

I n  t h e  case of commensurate o r b i t s ,  t h e  bias 

- 
This i s  a phenomenon which we c a l l  l i b r a t i o n ,  having 

Resonant o r b i t s  as they  a re  used here  are synonomous with 

commensurate o r  constant  ground t r ack  o r b i t s ;  those whose r a t e s  are 

r a t i o n a l  with respec t  t o  t h e  e a r t h ' s  r o t a t i o n  r a t e .  I n  addi t ion ,  of 

course,  w e  have spec i f i ed  the  o r b i t s  t o  be near  c i r c u l a r .  

phenomenon t h a t  we have, by our  o r b i t  averaging method, l i m i t e d  t o  our- 

s e l v e s  t o ,  might b e t t e r  be c a l l e d  s e c u l a r  o r  l i b r a t i o n a l - c i r c u l a r  pen- 

dulum e f f e c t s .  

l a r  changes i n  t h e  semimajor a x i s ) .  

longi tude  harmonics on these  commensurate o r b i t s  give r i s e  a l s o  t o  

t r u e  v i b r a t i o n a l  resonances ( i n  radius  and anomaly) following t h e  

mechanical analogy [l3], [20], 1211. Therefore, though t h e  e f f e c t  w e  

analyse f o r  should not  commonly be thought of as a resonance e f f e c t ,  it 

does ar ise  most s t rong ly  f o r  those o r b i t s  which do show t r u e  "resonance" 

phenomenon and thus  these  o r b i t s  may be j u s t i f i a b l y  c a l l e d  resonant  

o r b i t s .  But when we speak of a ''resonant g r a v i t y  harmonic" i n  t h i s  

paper, we use the  word resonant on ly  i n  the  sense of being capable of  

producing the  amplif ied changes of l i b r a t i o n  which a r e  a l s o  p rope r t i e s  

of t he  resonant o r b i t s .  

The "resonance" 

( r n  p a r t i c u l a r  we have only  r e a l l y  d e a l t  wi th  t h e  secu- 

But the  "in s t e p  ac t ion"  of t h e  
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It may be pointed ou t  t h a t  t h e  t r u e  v i b r a t i o n a l  resonances i n  a com- 

mensurate o r b i t  imply a buildup, or ampl i f ica t ion ,  of t he  o r b i t  ec- 

c e n t r i c i t y .  This ampl i f i ca t ion  would be without bound i f  t r u e  commen- 

, 

s u r a b i l i t y  could be maintained. O f  course it cannot, s ince  t h e  resonant  

o r b i t  gene ra l ly  l ibrates .  I n  fact ,  as might be i n f e r r e d  from i t s  depen- 

dence on t h e  d i r e c t i o n  of t he  d i s tu rb ing  force ,  the  e c c e n t r i c i t y  i t s e l f  

i n  a resonant o r b i t  appears t o  go through t h e  same long per iod  l i b r a t i o n  

t h a t  t he  semimajor a x i s  does [l8]. However, t hese  true "resonances of 

e c c e n t r i c i t y "  may not  be as use fu l  geode t i ca l ly  s ince  a l l  t he  longi tude 

harmonics H appear t o  con t r ibu te  t o  them. nm 

F ina l ly ,  we would poin t  ou t  t h a t  t h e  pendulum l i k e  changes of t h e  

semimajor a x i s  [descr ibable  from a seapra ted  so lu t ion  of the coupled 

equat ions (66)  and (67),  see R e f .  r93 f o r  example] have a p e r i o d i c i t y  of 

the order  of years only f o r  near  commensurate condi t ions .  These are t h e  

l i b r a t i n g  o r b i t s  f i r s t  discussed i n  R e f .  10 f o r  the  24 hour case.  I n  

cases  where t h e  ground t r a c k  moves a t  a considerable  rate, t h e  bas i c  

c i r c u l a r  pendulum eqaat ions r(66) and (67)  ] with small modif icat ion 

(a long  t h e  l i n e s  ou t l ined  i n  R e f s .  3 and 18)  may s t i l l  serve as the 

model of the  evolution. I n  these  cases  of fas t  g loba l  c i r c u l a t i o n  of 

the ground t rack ,  eva lua t ion  of (66) and (67) shows tha t  the c ross ing  

r a t e  and semimajor a x i s  o s c i l a t e  w i t h  a more r a p i d  frequency but  much 

diminished amplitude as compared t o  a l i b r a t i o n  case.  For example, i n  a 

g a s t  c i r c u l a t i o n  case the  per iod  i s  t y p i c a l l y  of t he  o rde r  of days and 

t h e  amplitude may be of t he  order  of hundreds of meters ( f o r  t h e  semimajor 

a x i s  change). 

t i o n s ,  t h e  amplitudes of t h e  semimajor a i s  change may be of t he  order  of 

t e n s  of kilometers r g ] .  

I n  f u l l  l i b r a t i o n  cases  w e l l  away from the eqJilibrium posi-  

The fast  world c i r c u l a t i o n  regime ( fa r  from resonance) 
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has been called dynamic resonance by Blitzer 

cussion here it is actually a circulating pendulum and not a true 

[211. But by the dis- 

resonance phenomenon. The reduction in amplitude of the pendulum 

effect in a fast circulation regime is due to the rapidity with which 

the orbit averaged bias force averages out over a global circulation. 

But in spite of the small amplitudes, "circulating pendulum resonance" 

has been used to good effect in discriminating a number of very high order 

coefficients in the earth's field from a dense global tracking of the 

Navy's Doppler-Transity Satellites [15]. 

The limitations of the model used here to derive the key orbit evolu- 

tion equations (66) and (67) should be re-emphasized. 

speaking these equations apply only to circular orbits of exact resonant 

Though strictly 

perlod, they have been shown, by numerous examples r8] and in a rigorous 

way [ 3 ] ,  [18], to be applicable with only slight correc-tion or modifi- 

cation to a much wider class of satellites. This class includes those 

with drift rates considerably exceeding the maximum permissible for 

libration as well as for noncircularorbits with eccentricities no 

higher than about 0.01. The equations, furthermore, give only the gross 

orbit averaged effects due to the earth's longitude gravity field. But 

over a period of the order of month's, it may be presumed that, well 

away from any strong influence of the earth's atmosphere or the moon's 

gravity, these equations will describe the dominating long term effect 

on the geographic configuration of all near resonant near circular 

orbits with the exception of inclination change due to the sun and moon. 

The extension of these regime equations to the class of eccentric 

resonant orbits is indicated by Gedeon, et. al. r181. 
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SUMMARY AND CONCLUSIONS 

The long term geographic evolut ion of c i r c u l a r  o r b i t  s a t e l l i t e  

ground t racks  which a r e  o r i g i n a l l y  near  s t a t iona ry ,  has been found. 

The equation governing the  motion of t h e  near s t a t i o n a r y  ground 

t r a c k  i s  e s s e n t i a l l y  t h a t  of a c i r c u l a r  pendulum f o r  each re levant  

e a r t h  longitude harmonic. The re levant  harmonics f o r  c i r c u l a r  resonant 

o r b i t s  form a tenuous but i n f i n i t e  subset  of the i n f i n i t e  s e t  of longi -  

tude harmonics 

For o r b i t  periods very c lose  t o  resonant, or r a t i o n a l  w i t h  respec t  

t o  the  e a r t h ' s  r o t a t i o n  r a t e ,  t h e  s inusoida l  ground t r a c k  l i b r a t e s  with 

a maximum excursion of 36Oo/m due t o  an ind iv idua l  re levant  

( resonant )  e a r t h  longitude harmonic. 

i s  the  order of 2-10 years for t he  s t ronges t  resonances and depends 

s t rong ly  on t h e  l i b r a t i o n  amplitude and i n c l i n a t i o n .  

The complete per iod of l i b r a t i o n  

These l i b r a t o r y - l i k e  evolut ion equations can be extended t o  far- 

from-stationary conditions t o  cover the  smaller,but de t ec t ab le ,d r i f t  

o s c i l l a t i o n s  of higher  frequency, c a l l e d  "dynamic resonance'' by B l i t z e r  [21]. 

Circular  resonant o r b i t s  of periods 3, 4, 4.8, 6, 8, 12, 14.4, 

and 16 hours appear t o  be p a r t i c u l a r l y  s u i t e d  t o  d iscr imina t ing  

unambiguously the  longitude harmonics HS8, HT6, HS5, H54, H 3 3 ,  H s ,  

H5, and H 4 3  respect ively,  i n  a reasonably s h o r t  period o f  time. 

hour s a t e l l i t e s  have a l ready  provided t h e  bes t  discr iminat ion of t he  t w o  

leading s e c t o r i a l  harmonics H22 and H33 as of 1966. 

s ing le  cont ro l lab le  t e s t  s a t e l l i t e ,  'hopping" from l o w  t o  h:'.gh c i r c u l a r  

resonant o r b i t s  and "s l id ing"  a number of times within each o r b i t  could 

provide unique discr iminat ion of most of t h e  above harmonics i n  a 

The 24 

It appears that  a 
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year  o r  two. The o r b i t  determination f o r  the  resonant s a t e l l i t e  used 

as a g r a v i t y  probe would not  have t o  be e l abora t e .  It would have t o  

insure  t h a t  a reasonably c i r c u l a r  o r b i t  has been achieved. The inc l ina -  

t i o n  must a l s o  be determined t o  about 0.1' accuracy. 

per iods the  longi tudes of a l l  the  equator crossings i s  a l l  the  da t a  

t h a t  i s  necessary f o r  a r ap id  harmonic determination. 

During f r e e  d r i f t  
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APPENDJX A - THE RESONANCE SELECTOR FOR SUPERSYNCHRONOUS ORBITS 

In t roduct ion  

It may be v e r i f i e d  t h a t ,  f o r  the supersynchronous 48 hour s a t e l l i t e  
I 

[s ince ra = kl; njr =z, and M = 1, r=-I 

s a t e l l i t e ]  t h e  h a l f  orbit p e r i o d i c i t y  condi t ions (2ga, b, e )  suggest 

f o r  t h e  48 hour 

t h a t  t h e  resonant harmonics are, 

For n-m even: 

m =  2, 4, 6, . . . 
For n-m odd: 

m = l ,  3, 5, . . . , o r  

However, c r i t e r i a  ( 32), extended from Allen ' s  work 131 and apparent ly  

equiva len t  t o  (29a, b, c)  f o r  F a l l ,  e l imina tes  some of t h e  lead ing  

harmonics i n  the  above series . Thus, ( 3 2 )  f o r  t he  48 hour s a t e l l i t e  

I 

i s  : 

which produces the  following t a b l e  o f  re levant  harmonics: 

m n 

1 4, 6, 8, ... 
2 4, 6, 8, ... 
3 6, 8, io, ... 
4 8, 10, 12, ... 

For example, c r i t e r i a  ( 3 2 )  says t h a t  H 2 2  i s  not  resonanf on the  48 hour 

s a t e l l i t e  white c r i t e r i a  (29a, b, C)  says t h a t  it i s .  
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We w i l l  now attempt t o  v e r i f y  by d i r e c t  ca l cu la t ion ,  which of these  

two resonance c r i t e r i a  i s  c o r r e c t  f o r  the  48 hour s a t e l l i t e  and pre-  

sumably f o r  a l l  supersynchronous o r b i t s .  

t h e  a long t r a c k  fo rce  on t h e  48 hour s a t e l l i t e  ( 4, =2) due 

t o  H22 as: 

Equation (B8) i n  (B6) gives  

Note t h a t  rTzL i n  (AI) has been wr i t t en  i n  terms of 51% 
=L 

f o r  t h e  

48 hour s a t e l l i t e .  The o r b i t  average of ( A t  ) i s  t o  be taken over 

0 S 1 9 5  C jlr since,  f o r  t h e  48 hour s a t e l l i t e ,  r = 1. 

It can be seen from ( A I  ) t h a t  the terms i n  S 1 d 2 ( ~ 0 - ~ ~ z )  are a l l  

cdd funct ions with respect  t o  o5 =r/L and 3T/! . Simi lar ly ,  t he  terms 

i n  C 0 5 2 ~ \ , - h , , )  are a l l  odd funct ions with respec t  t o  19~ =TT . 
Thus t h e  o r b i t  average of 

zero and H22 i s  no t  resonant on t h i s  o r b i t .  

f o r  a 48 hour s a t e l l i t e  i s  

Thus, even thgugh 

59 
6-;11(48 hour) i s  per iodic  over a ha l f  o r b i t  [ from (29b) ] it 

o r b i t  averages t o  zero.  This can only be t h e  case i f  it a l s o  h a l f - o r b i t  
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averages t o  zero.  It i s  i n t e r e s t i n g  but  s o  far  unexplained, t h a t  no 

h a l f  o r b i t  p e r i o d i c i t y  i n  FT has  been found t o  o r b i t  average t o  zero  

f o r  subsynchronous resonant o r b i t s .  

synchronous, however, we presume from the  inference  of t h e  preceeding 

ca l cu la t ion  that  many such p e r i o d i c i t i e s  w i l l  h a l f - o r b i t  average t o  

zero ( i n  the manner of products of per iodic  orthogonal func t ions ) .  

p a r t i c u l a r ,  t h e  inference  i s  s t rong  t h a t  ( 3 2 )  i s  s t i l l  t h e  c o r r e c t  

resonant harmonic s e l e c t o r  f o r  supersynchronous o r b i t s .  

For resonant  o r b i t s  h igher  than  

I n  

- 66 - 



APPENDIX B - ALONG TRACK FORCES FROM LONGITUDE GRAVITY HARMONICS THROUGH 
4TH ORDER, FOR RESONANT ORBITS 

It will be useful ,  i n  discussing t h e  o r b i t  averaged behavior of  

a resonant o r b i t  under t h e  ac t ion  of a longi tude g r a v i t y  harmonic, t o  

develope t h e  along t r a c k  force  from t h i s  harmonic as a funct ion of 4 t h e  

e a r t h  angle turned s ince  t h e  s a t e l l i t e  w a s  a t  i t s  ascending node. 

Figure 2 i l l u s t r a t e s  t he  geometry appl icable  t o  the  considerat ion here  

of a c i r c u l a r  o r b i t  s a t e l l i t e .  F r o m t h i s  f i g u r e  we note the  following 

sphe r i ca l  tr igonometric re la t ionships :  

) 

The geographic longitude s a t e l l i t e  a t  any time t after i t s  nodal 

passage i s :  

We note from (2) t ha t  f o r  the resonant o r b i t  spec i f i ed  by whole posi-  

t i v e  numers 2,  and yz , (B2) becomes : 
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We also note that for the resonant orbit 

by fa&/$ . 
satellite, due to H,, is (See Figure 5) :  

0, 

The along track force on the circular orbit 

can be replacdin (B1) 

- - F sidd + F  COS^ 
A, nm Q P M  

The longitude and latitude components of the earth gravity perturbation 

forces through 4th order are given in Section VI11 of Ref. [ $ I ] .  

can be seen from (B1),(&) and Ref. [Bl] that we can write 

It 

The g ' s  are all functions of i, n, m, and t z e e  - only: 
P I  



For  the  24 hour s a t e l l i t e  

througk.. 4 t h  order  ( f o r  mf0) from equations (311, ($1, (421, (451, ( 5 l ) ,  

(541, ( 5 0 )  and ( 5 3 )  in Reference [B2]. On t h e  r i g h t  s ides  of t hese  

equations we rep lace  0 by fL@e and f i n d  ( f o r  Hsz): 

2’ = 2, = I and t h e  g ’ s  can be evalua ted  

I - 
PI 

For H31, we f ind ;  
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* 
For H33 

For H41, we f ind ;  



For H42 we f ind;  
I 

we f i n d :  
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APPENDIX C - THE THEORY OF THE 12 HOUR SATELLITE . 
We can derive t h e  theory  of t h e  12 hour ( c i r c u l a r  o r b i t )  

resonant  s a t e l l i t e  i n  two ways. E s s e n t i a l l y  t h e y  are both methods o f  

eva lua t ing  the o r b i t  averaged d i s t u r b i n g  force .  I n  t h e  f i r s t  we com- 

pute  d i r e c t l y  the  average along t r a c k  d i s tu rb ing  fo rce  from t h e  a s soc i -  

a t e d  Legendre harmonics as t h e y  appear i n  sphe r i ca l  coordinates  

(Appendix B ) .  

of  t h e  Keplerian elements ( see  Sec t ion  5 ) .  

I n  the  second, we compute t h e  p o t e n t i a l  as a func t ion  

The de r iva t ive  of t h i s  wi th  

respec t  t o  t h e  o r b i t  argument a l s o  r ep resen t s  t h e  along t r a c k  f o r c e  

whose o r b i t  average may be taken. Once the  o r b i t  averaged f o r c e  i s  

obtained, Equations (18) and (1.9) give t h e  o r b i t  evolu t ion  as long as 

condi t ions  a r e  reasonably c lose  t o  resonance. The f i r s t  method w a s  used 

i n  Reference [Cl] t o  der ive  t h e  theo ry  f o r  t h e  24 hour s a t e l l i t e  through 

4 t h  order  i n  e a r t h  g rav i ty .  The results of t h e  orbi t -averaged compu- 

t a t i o n  appear i n  (34).  

second method of computation which i s  summarized i n  equat ions ( 6 5 )  and 

( 6 7 )  f o r  any resonant o r b i t .  

t h e y  should) f o r  t h e  24 hour s a t e l l i t e  

These may be compared with the  results of t he  

The two methods give i d e n t i c a l  results (as 

It i s  n o t e d  t h a t  t he  s t ra ight forward  method , while cumbersome t o  

c a r r y  o u t , i s  capable of generat ing t h e  o r b i t  averaged fo rce  f o r  any har-  

monic-resonance condi t ion through eva lua t ion  of t h e  $ equat ions i n  

Appendix B t o  any order .  

t i o n s  f o r  synchronous and nonsynchronous resonant  o r b i t s  convinces us 

t h a t  ca l cu la t ion  of t he  o r b i t  averaged force  through (65) w i l l  y i e l d  

c o r r e c t  r e s u l t s  i n  a l l  resonance cases .  I n  p a r t i c u l a r ,  where t h e  reso- 

nant harmonic se l ec to r ,  Equation ( 3 2 ) ,  has  been v i o l a t e d  f o r  many har -  

monic-resonance conditions a t ,  below,and above synchronous a l t i t u d e s ,  

However, ex tens ive  eva lua t ion  of t hese  equa- 
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t h e  s t r a igh t fo rward  o r b i t  averaged force, as given through 4 t h  order  i n  

Appendix B, has  always been zero.  

We show here, f o r  example, t he  correctness of (65) f o r  eva lua t ing  

I n  Appendix D we show by numerical t h e  Hz (12 hour) resonant e f f e c t .  

i n t e g r a t i o n  of a p a r t i c a l  t r a j e c t o r y  t h a t  (67) i s  c o r r e c t  f o r  a spec i -  

f i c  conf igura t ion  of a 16 hour o r b i t  (T-3, ~ ' 2 2 )  . This l a t t e r  case 

i s  important because it represents  a check of t h e  extension here  of t h e  

formulae [similar t o  (66) and (6711 given by Allan [3] f o r  t h e  n ' = l  

day resonances. 

Before beginning the  eva lua t ion  o f  t h e  lead ing  resonant harmonic' 

e f f e c t ,  we may note t h a t  i n  the  case o f  t h e  12 hour s a t e l l i t e ,  - a l l  

t h e  nonresonant harmonics appear t o  be s e l e c t e d  by t h e  "an t iper iodic"  

c r i t e r i a  ( 30) and (31). 

f o r  the 12 hour o r b i t  Cr=2, M = I )  

For example, t h e  s t r i c t l y  nonresonant harmonics 
I 

a r e  from (30) and (31) : 

where Hnm, 

and 

m = 4, 8, 12, ... for n-m odd, 
m = 2, 6, lo, ... f o r  n-m even 
m = 1, 3, 5, 7 

It i s  seen then,that from these  s t r i c t  negative c r i t e r i a ,  the harmonics 

which may have long term resonance e f f e c t s  on the  1 2  hour s a t e l l i t e  

J 

- 
a r e  those  H h e r e  nm 

m = 4, 8, 12, . . . f o r  n-m even, 

and m = 2, 6, 10, ... f o r  n-m odd. 

Indeed, such harmonics s a t i s f y  t h e  p e r i o d i c i t y  s e l e c t o r  (29 )  which, 

we have seen, i s  s t r i c t l y  equivalent t o  t h e  more general  s e i e c t o r  (32) 

o r  ( 6 5 ~ ) ~  f o r  r 7 n  ( subsynchronous resonant o r b i t s ) .  
1 
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Thus, t h e  l o w e s t  o rder  ( n )  resonant harmonic on t h e  12 hour o r b i t  
-n 

i s  Hs. It i s  presumed t o  be dominant both because of t h e  a* poten- - 
t i a l  dec l ine  w i t h  d i s t ance  [See Equation (6711 and t h e  apparent  JnM 

dec l ine  wi th  increas ing  n .  The normalized c o e f f i c i e n t s  themselves 

g ive  a c o r r e c t  i n t e r p r e t a t i o n  of t h e  mean r e a l t i v e  s t r eng ths  of t h e  

harmonics a t  the sur face  of the  earth.  It should be noted, though, 

(see Table 2, f o r  example) t h a t  t h e  dominance of  harmonic e f f e c t s  i s  

s t r o n g l y  dependent on i n c l i n a t i o n  as w e l l .  This dependence r e f l e c t s  

t h e  i n t e g r a t e d  e f f e c t  of t h e  satel l i te’s  motion i n  l a t i t u d e .  

The sphe r i ca l  harmonics themselves, of couxse, vary  s t rongly  i n  

l a t i t u d e , .  When we speak of gcnera l  dominance here ,  we refer t o  t h e  

mean e f f e c t  over. a l l  i n c l i n a t i o n s .  

Proceeding with the  evaluat ion of the long term e f f e c t  due t o  H s  

(12 hour),  from Appendix B, Equations (E61 and (BlO), we have (with 



It can be seen t h a t  t he  f a c t o r  of 5 i i J z l X c - 4 3 ~ )  above i s  an "odd" 

func t ion  with respec t  t o  e e = r  . Thus, s ince  t h e  double-orbi t  

average of  eel) [See Eq. (9)  ] i s  achieved i n  the  i n t e r v a l  0 5 

( f i  = I 

t o  zero.  Retaining only the  r e l evan t  c 0 5 2 & - A ~ ~ )  term of  (Cl): 

I 
s i d e r e a l  hy), t h e  S J ~ J ~ ( ~ - A , ~  term w i l l  double o r b i t  average 

Let : 

Then ((22) becomes : 
F 
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Reducing B above: 

Combining B (above) and A, (C3) becomes: 

I n  the  1 2  hour o rb i t ,  b5 L 2% [see Equation ( la)] .  Thus, 

=. and Equation (9) becomes: 

(for the  12 hour resonant o r b i t ,  double o r b i t  averaged): 

- FT C I z /iOuR) = cTT 1 r i l e e , d o e  
0 



With these  integrals,(C4) i n  ( C 5 )  gives:  

F 

Equation (C6) i n  (19) gives t h e  long term acce le ra t ion  of t h e  ascending equator  

c ross ings  of t h e  12 hour sa te l l i t e  due t o  Hz. 

and h=x, 
b i t s  t r e a t e d ,  e f f e c t i v e l y ,  as a continuous va r i ab le .  

l a t i o n  gives  : 

1 

We note  t h z t  F= F . A  z 
t h e  u n r e s t r i c t e d  pos i t i on  of t he  c ros s ing  over many or -  

Thus, t h i s  formu- 
J 

W e  now evaluate  Equation (65) f o r  the second formulat ion of t h i s  ac- 

c e l e r a t i o n .  Evaluat ing (65c) f o r  d r e l e v a n t )  = 3, d r e l e v a n t )  = 2, 

- M '  (12 hour) = 1/2: 
r 
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p (Hs, 12 hour resonance) = 3 d  = I 
R 

Thus, (65a) gives the resonant inclination function for H S ( 1 2  hour) as: 

But ; 

Thus : 

From Equation (C8) in (67), the acceleration of the crossing longitude 

use to Hz in the 12 hour orbit is: 

6 

which is identical to the direct orbit averaging formulation, Equation (c7) .  
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Simi lar ly ,  from e i t h e r  t h e  d i r e c t  o r b i t  averagining formulation, or 

from Equation (67), we have found t h a t  the  e f f e c t  due t o  H44 on t h e  12 

hour s a t e l l i t e  i s :  

rad. , 
s id .  day2 

Tables D2 and D 5  give a comparison of t he  t h e o r e t i c a l  motion due t o  

H s  and H4, from equations ((29) and (ClO),with numerically in t eg ra t ed  

p a r t i c a l  t r a j e c t o r i e s .  

REFERENCES 

[ C l ]  Wagner, C. A. "The D r i f t  o f  an Incl ined-Orbi t  24 Hour S a t e l l i t e  

i n  an Earth Gravity F ie ld  Through Fourth Order'', NASA-TN-D- 

3316, 1966. 

- 81 - 



APPENDIX D - ONE AND TWO DAY RESONANCE TESTS: 8, 12 AND 16 HOUR ORBITS 

We can check the validity of the formulation of the orbit averaged 

librational equations of motion (67) by comparing them with a complete 

numerical solution of the equations of motion for a trajectory in the 

presence of the critical disturbing forces. Tables D l - x ,  show the 

results of these numerical studies on near circular resonant orbits of 

8, 12 and 16 hours. 

I - 82 - 

The trajectories run about 16 sidereal days from near stationary 

ground track conditions. We hope to determine that even in this short 

time span, it will be possible to discriminate the relevant harmonic 

accelerations to reasonably high accuracy according to the simple theory 

presented here. 
8 HOUR ORBIT 

For the 6 h o w  (one day) resonant orbit the leading relevant 

harmonic is H33 (having the least n satisfying (32 )  for r=3,~’=I ) .  

The orbit averaged equation for the acceleration of the longitude of 

the ascending equator crossing due to H33 on an 8 hour orib r(67), with 

1=2, p = 1 3 gives: 

The normalized 7 are given from the non-normalized [ in (6711 by: 
nm 

(D2) 



- -b 
Evaluat ing (D1) f o r :  T33 =-/.]4-7frjo , U (8 hour o r b i t )  = 3.1791 E-R.  * 1 
i =3c; A,, -2.e.o; =s+./ , t h e  t h e o r e t i c a l  l ong i tud ina l  

acce le ra t ion  i n  t h e  neighborhood of  =oo should be: 

( s e e  Table D1) . 
The fol lowing da ta  i s  from a p a r t i c a l  t r a j e c t o r y  [generated by a 

modified Encke method [Dl]] computed numerically, i n  t h e  presence of 

per turba t ions  due t o  H33 [ w i t h  constants  given above] H 2 2  and H31 only.  

The s p e c i f i c a t i o n s  f o r  H22 i n  t he  t r a j e c t o r y  generator  are: TL2 =-109rcro -6 
J 

6 x,, = -2 ie  . The spec i f i ca t ions  f o r  H31 are: T3, - / . 5 ~ 1 0 ;  A3, SO', 

From t h e  theory,  H31 and H 2 2  should have no long term e f f e c t  on t h e  8 

hour s a t e l l i t e .  By long term here,  we mean over per iods which are 

mul t ip l e s  of one s i d e r e a l  day. 

Ascending Equator Semimajor I n c l i n a t i o n  Eccen- 

( H r s . ) ,  (Degrees Eas t  of (Ear th  Radi i )  (Degrees) (10-6) 
j Time Crossing Longitude Axis t r i c i t y  

7- Greenwich), 

0 0. 54.0 3.1781 30.0 0.14 
1 191.476 54.00290 3.1781 30.0 0.13 
2 382.950 54.02279 3.1781 30.0 0.15 

Numerical T ra j ec to ry  Data f o r  an 8 Hour Earth S a t e l l i t e  Disturbed by Hz2, H,l 

and H3, Only. 

I n  the  above t r a j e c t o r y ,  the  longitude acce le ra t ion  i s  given approximately 

as : 
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constant - where d 'T=T  -Ti 2 

Since 7; - T, 2 .Tz- T; & 

tion in the numerical trajectory is: 

J +I 

8 sidereal days, the "measured" accelera- 

The discrepancy between the orbit averaged theory and the numerical 

trajectory data is only 0.0014 X 1 0 - 5  rad./sid.daf out of 0.4633~lO'~ 

rad/sid. daf or about 0.3%. 

12 HOUR ORBIT 

For the 12 hour (one day) resonant orbit, the leading relevant 
I harmonic is H s  (having the least n satisfying (32) for P = 2, kl = I ). 

The orbit averaged equation for the acceleration of the longitude of 

the ascending equator crossing due to H s  on a 12 hour orbit [(67), 

withJ=A, p =  I 3 gives: 

We consider a partical trajectory with only HS acting as a perturbation. 

The initial circular orbit has a period of 12 hours 

The inclination is 30' and the initial longitude of the ascending equator 

crossing is at 0'. The HS constants are: T2. = - 10 

From (D6) the long term acceleration should be: 

( L, = 4.16449 E.R.). 

- -5- 0 

J x 3 2 =  O 

.~ 
'TH. 

(see Table D2) 
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The following ascending equator crossing data is from another numerically 

integrated particle trajectory, in the presence of perturbations due to 

Hs only (with constants given above). 

Time Longitude Qa i Eccentricity: e 
( H r s .  ) (Degs. (E.R.) (Deg's) 

0. 0. 4.. 1645 30.0 10-6 

191.476 -0.00660 4.1645 30.0 10- 

382.953 -0.02598 4.1645 30.0 

TABLE D2 

Numerical Trajectory Data for A 12 Hour Earth Satellite Disturbed By 
H z  Only. 

In the above trajectory the longitude acceleration (over the 16 sidereal 

day period) is given approximately by (D4) or: 

rad. Isid. daf 

Once again the discrepancy between the orbit averaged theory and the 

numerical trajectory data is very small., amounting to only about 0.1%. 

The simulated trajectory summarized in Table D3 has initial condi- 

tions precisely the same as in Table D2 except for the addition of earth 

zonal gravity and the attractions of the sun, moon and planets. The 

zonal gravity constants used are J20 = 1.0823W0-3, Jm = - 2 . 3 ~ 1 0 - ~  

and J4, = -1.8n0-~. 

( H r s .  from 1966.0) (Degs.) (E.R. ) (Degs. 1 e 
TLME LONG. a, i 

0. 0. 4.1645 30.00' io-* 

191.434 0.14563 4.1645 30.02 

382.870 0.27110 4.1645 30.02 

TABLE D 3  - Numerical Trajectory Data for A 12 Hour Earth Satellite 
Disturbed by HS, Earth Zonal Gravity, the sun, moon and Planets 
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I n  the  above t r a j e c t o r y ,  the  longi tude acce le ra t ion  i s  given approxi- 

mately as: 

rad.  /sid. daf , D8)  

It i s  apparent from the  8 hour s tudy t h a t  cont r ibu t ions  t o  e r r o r  i n  the  

simple theory  from non resonant e a r t h  longi tude g r a v i t y  a r e  neg l ig ib l e  

f o r  these  near ly  s t a t iona ry  o r b i t s .  But from the  previous two t a b l e s  

t h e  error i n  the long term theory due t o  o the r  g r a v i t a t i o n a l  e f f e c t s  

i s  c l e a r l y  not neg l ig ib l e  over 16 s i d e r e a l  days. I n  f a c t ,  o the r  s tud ie s  

have shown([D2], [D3])that t h e  sun and moon alone accounts f o r  near ly  

a l l  o f  t h i s  major  discrepancy. 

t a t i o n a l  e f f ec t s  alone gives the  p a r t i c l e  t r a j e c t o r y  a mean motion over 

only 16 days close t o  t h a t  o f  t h e  f u l l y  per turbed motion. 

I 

' 

But t h e  presence o f  t h e  s t rong nonresonant grav i -  

I Therefore, 

it appears reasonable t o  t r y  and evaluate  the  "sun and moon" e f f e c t  

independently of t h e  f u l l  t r a j e c t o r y .  Then, sub t r ac t ing  t h i s  from the  

f u l l  e f f e c t ,  we hope t o  ge t  a reduced acce le ra t ion  which can be assumed 

t o  be due t o  the  re levant  resonant g r a v i t y  terms alone.  

The simulated t r a j e c t o r i e s  i n  Table D 4  are a t e s t  of t h i s  e r r o r  

i-eduction idea. I n i t i a l  conditions were t h e  same as  i n  Table D 3  

except - no earth longitude g rav i ty  e f f e c t s  were included f o r  t he  t r a -  

j ec to ry  with bracketed data .  

resonant t r a j e c t o r i e s  was 14 days. 

The running time f o r  both f u l l  and non- 
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LONGITUDE 

( H r s .  from 1966.0) ( Degrees ) (E.R.) 

i 

0. 

(0.) 

0. 4.1645 30. 0' 
(0.) ( 4.164 5 ) (30.0~) (10'~) 

167.505 0.12756 4.1645 W.OO i o m 4  
(167.505) (0.13243) (4.1645) (30.0') (iom4) 

335 011 0.24023 4.1645 30.0' 

( :35.010) (0.259741 (4.1645) (30.0~) 

TABU D4: Numerical Trajectory Data in Two Sun and Moon Perturbed 12 
Hour Orbits; Disturbed (unbracketed data) and Undisturbed 
(bracketed data) by Hz. 

In the H=-disturbed trajectory (unbracketed data), the measured ac- 

celeration is : 

In the H=-undistwbed trajectory (bracketed data), the measured ac- 

celeration is: 
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Equation (D10) subtracted from lD9) gives the reduced,or sun and moon 

corrected acceleration as: 

2 
(corrected) = -0.3476~lO-~ rad./sid.day 

wEAr5, 
D11) 

But the theoretical acceleration due to HS alone for this orbit is 

very close to (D6). 

ting the earth resonance acceleration is valid to within about 0.15% 

with this particular orbit. Eor  relatively short trajectories, where 

the long period mean motion is still approximated very well by the 

nonresonant gravity effects, this simple correction technique should 

apply quite well in analyzing resonant orbit data. 

jectories, it may be necessary to alter the initial energy of the simu- 

lated trajectory without resonand gravity so it approximates the fully per- 

turbed trajectory more closely. This may be done most simply by altering 

the initial semimajor axis, for example. At any rate, tests of the correction 

method, similar to that above, should always be performed to check the 

method. We may note that this is, if successful, a direct method for 

evaluating the long term contribution of nonresonant effects. 

an additional trajectory simulation (one without the resonance terms) 

than the indirect method previously used by the author [D2] in analyzing 

24 hour data. However, since it evaluates these effects directly, and 

without assuming a specific longitude gravity field, it should prove to 

be a valuable check on the previous method. 

Therefore we see that this simple method for evalua- 

For longer tra- 

It requires 

For the 12 hour (one day) resonant orbit, the next relelant harmonic 
I 

(having the next to least n satisfying (32) for r = 2 ,  fi = I  ) is H44. Hnm 

The orbit averaged equation for the acceleration of the longitude of 
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the ascending equator crossing, due to H,, on a 12 hour orbit [(67), 

with A=Z, P S I  ] gives: 

2 

4- 
44-  [ 5 , N i L  1 + C O S  i ,3 3rrJ +[ A -&A / = -75 .073  7 

a* 
(D12) 

2 rad. /sid.day * 

We consider a partical trajectory with only H4, acting as a perturbation. 

The initial conditions for the trajectory are otherwise the same as in 

the Hs studies. 
e -3 c - 22.5- , The H,, constants are: JW 5 -'o h6 

1 44-- 

is about 100 times a likely realistic value (see Figure 8 )  to provide 

an acceleration vhich will not be substantially "lost" in the roundoff 

error of the trajectory generator. 

From (D12) the long term acceleration should be: 

rad. /sid.day 2 , 

The following ascending equator crossing data is from a 16 day 

numerically integrated particle trajectory, in the presence of pertur- 

bations due to H,, only (whose constants are given above). 

i e Time Longitude a* 
(Hrs. ) (Degs. ) (E.R.) (Degs. ) 

0. 0. 4.1645 30.0 
191.482 -0.08736 4.1647 30.0 10-7 
382.975 -0.34907 4.1648 30.0 
TABLE D5 - Numerical Trajectory Data for a 12 Hour Earth Satellite 

Disturbed by H,, Only. 
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I n  t h e  above t r a j e c t o r y ,  t h e  longi tude  i s  given approximately as: 

rad.  /sid. daf 

Comparison of (Dl3) with  ( D 1 4 )  again shows a very small discrepancy 

between t h e  theory and the  simulated data;  of  t he  order  of 0.05%. 

( D 1 4 )  

16 HOUR ORBIT 

The 16 hour resonant o r b i t  w i l l  undoubtedly be t h e  most promising 

one f o r  geodetic purposes, of t h e  two synodic day o r b i t s  ( s e e  TABLE 3). 

For t h i s  o r b i t ,  t h e  lead ing  r e l e v a n t  harmonic i s  H43 (having the  l e a s t  

n s a t i s f y i n g  (32) for I- = 3 fl = 2 ) . The o r b i t  averaged equation for 

t h e  ascending equator c ross ing  due t o  H 4 3  on a 16 hour o r b i t  [ ( 6 7 ) ,  

with ,e = 2, p = l  

i 

1 

3 gives:  

(D1.5). 

We consider a 16 hour o r b i t  (a* = 5.0449 E . R . )  wi th  only  H43 a c t i n g  as 

a per turba t ion .  

and an i n i t i a l  ascending equator c ross ing  a t  

a re :  J43 = -2.2098x10-5, x q j = O  . Again,J43 i s  chosen about 100 

times r e a l i s t i c  i n  order  t o  overcome roundoff e r r o r  i n  t h e  comparison 

The i n i t i a l  c i r c u l a r  o r b i t  has an i n c l i n a t i o n  of 30’ 
0 . The H 4 3  cons tan ts  

0 - 

with  t h e  numerically computed t r a j e c t o r y .  
0 

From ( D l 5 ) ,  t he  long term acce le ra t ion  i n  t h e  neighborhood of =O 

should be : 

r ad .  / s i d .  da$ . (D16) 
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The following ascending equator crossing data is from a numerically 

integrated partical trajectory, in the presence of perturbations due to 

H 4 3  only (with constants given above). 

TIME LONGITUDE a* i e 
( H r s .  1 (Degs. ) ’ (E.R.) ( Degs . ) 

0. 0. 5.0449 30.0 

191.474 0 * 02335 5.0449 30.0 

382.945 0.09107 5.0448 30.0 

TABLE D6 - Numerical Trajectory Data for a 15 Hour Earth Satellite 
Disturbed by H43 Only. 

In the above trajectory the longitude acceleration (over the 15 

day period) is given approximately by (D4), or: 

2 
rad. Isid. day 

Again the discrepancy between measured (Dl7) and theoretical (D15) 

accelerations is about 0.15%. 
-5 2 

* a  

We note that for the weak resonances ( .2 * - Ix la rad./sid.day ) 

the accuracy of the determination cff the acceleration may be improved 

cansiderally by utilizing all 2r equator crossings. In doing so, of 

course, care must be taken in choosing the correct form of the condition 

equation (57); usingxzl for descending and /=z for ascending 

equator crossings. 

In summary, the results of this section combined with tke reported 
\6 M 

accuracies of the tracking of early bird,[D2], appear to make all the 

orbits in Table 3 amenable to simple geodetic analysis for resonant 
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longitude gravity harmonics in the earth's field. (See conclusions. 1 
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APPENDIX E LIST OF SYMBOLS 

G Location o f  t h e  Greenwich Meridian 

x Generally, geographic longi tude of t he  ascending equator  

c ross ing  of t h e  s a t e l l i t e  ( a l s o  referred t o  as 

reference t o  the  beginning or near  t h e  beginning of t h e  

dynamics). 

of t h e  descending equator c ross ing .  

when subscr ipted,  r e f e r s  t o  o r b i t  number 

Geographic l a t i t u d e  o f  t h e  s a t e l l i t e .  

Pos i t i on  of the  s a t e l l i t e  ( 5, 

star t  o f  t he  dynamics o r  a t  t h e  re ference  ascending 

equator  c ross ing) .  

Number of o r b i t s  i n  t h e  synodic per iod  of the  resonant 

s a t e l l i t e  ( n '  s i d e r e a l  days); an in t ege r .  

An i n t e g e r  (pos i t ive ,  negat ive o r  zero)  ih? number of 

g loba l  c i r c u i t s  of t h e  resonant  orbit 's ground t rack, in  

i t s  synodic period. When subscr ipted,  also,  i n t ege r s  o f  

t h e  r a t i o n a l  f r a c t i o n  expressing the  commensurability of 

t he  resonant  o r b i t  with the  e a r t h ' s  ro t a t ion .  

Time from t h e  beginning of t h e  dynamicc or some a r b i t r a r y  

zero.  

Argument of the ascending ncde, c e n t r a l  ang;'-e i n  t he  o r ' i i t  

from the  ascending node t o  the  s a t e l l i t e  (also subscr ipted 

e o  and e5 ) .  

, w i t h  

Can a l s o  r e f e r  t o  the  geographic longi tude 

i s  i t s  pos i t i on  z t  the  
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LIST OF SYMBOLS, CONT. 

I n e r t i a l  longi tude excursion of t he  s a t e l l i t e  from i t s  

i 

r 

o( 

M '  

a 

F 

E 

ascending node 

I n c l i n a t i o n  of t he  s a t e l l i t e ' s  o r b i t  ( a l s o  used as a dummy 
in t ege r - subsc r ip t ) .  
The e a r t h ' s  i n e r t i a l  r o t a t i o n  r a t e .  

Geographic excursion o f  t he  s a t e l l i t e  from an i n i t i a l  

pos i t i on  

Orb i t a l  revolu t ion  r a t e  of t he  s a t e l l i t e .  

The i n e r t i a l  longi tude turned  by t h e  e a r t h  s ince  the  

start  of the  dynamics 

The d is tance  from the  center  of t he  e a r t h  t o  the  s a t e l l i t e .  

Per turba t ion  fo rces  i n  the  r a d i a l ,  l ong i tud ina l  and l a t i -  

t u d i n a l  d i r ec t ions ,  a c t i n g  on t h e  s a t e l l i t e  

The azimuth of the s a t e l l i t e ' s  t r a j e c t o r y .  

The synodic per iod ( i n  s i d e r e a l  days) of t h e  resonant o r b i t  

s a t e l l i t e ,  an in t ege r .  The number of i n t e g r a l  days f o r  

t he  s t a t i o n a r y  ground t r a c k  t o  begin t o  repea t  i t s e l f .  

The semimajor axis of t he  s a t e l l i t e ' s  orbi t ,a lso sub- 

s c r i p t e d  &, . ( 

e a r t h  r a d i i ) .  

The t a n g e n t i a l  (a long t r ack )  component of t h e  pe r tu rba t ion  

fo rce  F.  

A per turba t ion  fo rce  (when superscr ip ted ,  a nol!-dimensional 

force). 

The t o t a l  energy ( k i n e t i c  and two-body g r a v i t a t i o n a l  p o t e n t i a l )  

of a s a t e l l i t e .  

i s  the  semimajor axis i n  u n i t s  of 

When subscr ip ted  nmp, an i n c l i n a t i o n  fo rce  funct ion . 
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LIST OF SYMBOLS, CONT.  

i j  
i r l  

A small, but finite, change ( 6  not sub or superscripted) 
The earth's Gaussian gravitational constant. 

The r orbit average of the quantity ( ), except in 

reference to Cn"/ s,, zw ( see below). 

An increment of time, in units of synodic days (not neces- 

c_ 

J 

sarily integral) 

An increment of time, in units of sidereal days. 

d (  with the time increment in units of sidereal days. 
Z F  
The period of the satellite's orbit ( T o  or Td is 

the period ifi sidereal days). ' with the time increment in units of sidereal days. dtz 
11 nondimensional semimajor axis change rate: in = A/& 
the units of L,, are:(sidereal days)-'. 

The gravitational potential function of the earth. 

; 

Signifying the gravitational harmonic term of 

power m. 

The mean equatorial radius of the earth. 

The associated Legendre polynomial of order n 

The amplitude and phase of the non-normalized 

harmonic H nm' 

order n and 

and degree m. 

gravity 

The normalized amplitude, cosine coefficient and sine 

coefficient of the gravity harmonic H 

The ground track longitude span of half an orbit. 

nm' 
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I I 

Qi, 'i 

3 

When subsc r ip t ed  by i n t e g e r s  and/or superscr ip ted ,  

a o r  b a r e  cor&ta#i ts  

Work done by pe r tu rba t ion  fo rces .  

Case numbers 

A pos i t i ve  in t ege r ,  or zero 

A dummy va r i ab le  

The mean anoriilly of the s a t e l l i t e  a t  t h e  beginning of 

the dynamics. 

Kepler ian elements;  e c c e n t r i c i t y  ( n o t  used as a sub- 

s c r i p t ) ,  argument of  per igee,  mean anomaly, t r u z  

anomaly, and r i g h t  ascension of t he  ascending node. 

The real  p a r t  of 5 3 
Js;r , except where used as a dummy i n t e g e r .  

An i n c l i n a t i o n  fo rce  func t ion  (when superscr ip ted ,  t h e  

real  value of t h e  fo rce  function). 

A d i s tu rb ing  pote 'n t ia l  func t ion  

e , e = 2.718 ... 
The l o c a t i o n  of  t h e  Vernal Equinox. 

A p o s i t i v e  i n t e g e r  o r  zero.  

Phase angles  of  the d i s tu rb ing  func t ion .  

Phase and Frequency constants  of t h e  d i s t u r b i n g  func t ion .  

An i n t e g e r  o r  zero .  

The number of o r b i t s  pe r  day i n  Allan's Resonance Theory 

AS a subsc r ip t  o r  i n  o r  odd 

r e f e r s  t o  a descending equator  crossing,  Q =  2 o r  even 

r33 

S'Lfl, w1 &) j /. = 1 

r e f e r s  t o  an ascending equator c ross ing .  
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(O,,, C S a , )  

2 

nM 

xe; A,,, e,u 

Non-normalized cosine and s i n e  g r a v i t y  harmonic c o e f f i c i e n t s .  

Standard devia t ion  ( o r  es t imate  o f  i t )  

Dominant, subdominant. 

An i n c l i n a t i o n  dependent harmonic f x c i n g  funct ion usua l ly  

assmed cons tan t  over a l i b r a t i o n  per iod.  

An equ-ilibrian longitude; s t ab le ,  and uns tab la .  

The mininun l i -bra t ion  per iod  of a resonant o r b i t .  

A frequency o r  angular rate.  

An i n c l i n a t i o n  independent haman ic  fo rc ing  funct ion.  

Harmonic fo rc ing  funct ions.  
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